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HIGHLIGHTS 

• A family of SAs–M–N–C consisted of carbon nanosheets supported atomic sites of isolated metal atom coordinated with four pyrrolic 
N atoms was fabricated.

• The SAs–Ni–N–C exhibited superior electrochemical  CO2 electroreduction  (CO2ER) activity and selectivity.

ABSTRACT Atomically dispersed metal–nitrogen sites-anchored 
carbon materials have been developed as effective catalysts for  CO2 
electroreduction  (CO2ER), but they still suffer from the imprecisely 
control of type and coordination number of N atoms bonded with cen-
tral metal. Herein, we develop a family of single metal atom bonded 
by N atoms anchored on carbons (SAs–M–N–C, M = Fe, Co, Ni, Cu) 
for  CO2ER, which composed of accurate pyrrole-type M–N4 structures 
with isolated metal atom coordinated by four pyrrolic N atoms. Benefit-
ting from atomically coordinated environment and specific selectivity 
of M–N4 centers, SAs–Ni–N–C exhibits superior  CO2ER performance 
with onset potential of − 0.3 V, CO Faradaic efficiency (F.E.) of 98.5% 
at − 0.7 V, along with low Tafel slope of 115 mV dec−1 and superior stability of 50 h, exceeding all the previously reported M–N–C 
electrocatalysts for  CO2-to-CO conversion. Experimental results manifest that the different intrinsic activities of M–N4 structures in 
SAs–M–N–C result in the corresponding sequence of Ni > Fe > Cu > Co for  CO2ER performance. An integrated Zn–CO2 battery with Zn 
foil and SAs–Ni–N–C is constructed to simultaneously achieve  CO2-to-CO conversion and electric energy output, which delivers a peak 
power density of 1.4 mW cm−2 and maximum CO F.E. of 93.3%.

KEYWORDS Atomic dispersion; Pyrrole-type metal–N4 structure; Catalytic site; CO2 electroreduction; Zn–CO2 battery
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1 Introduction

With the increasing concentration of atmospheric carbon 
dioxide  (CO2), how to effectively reduce  CO2 into available 
resources, such as carbon monoxide (CO) [1–4], formic acid 
(HCOOH) [5, 6], hydrocarbons  (C2,  C3) [7, 8], and alcohols 
 (CH3OH,  CH3CH2OH) [9, 10], by using electrochemical 
strategy has become a hot topic. Among all reported products 
from  CO2 electroreduction  (CO2ER), CO gas is a relatively 
easy product to be yielded due to the  CO2-to-CO conversion 
only involved two-step procedure of proton-coupled electron 
transfer. Moreover, the produced gaseous CO can be handily 
separated and be further used as resource in other industrial 
applications, like Fischer–Tropsch process [11]. Originally, 
noble metals (Au, Ag, Pd, etc.)-based materials are widely 
used to catalyze  CO2 into CO [12–14]; however, the applica-
tion of these noble metal materials is highly hindered by their 
high cost and scarcity. Hence, significant efforts have been 
devoted to develop low-cost and highly effective alternative 
catalysts to replace the noble metals materials for  CO2-to-CO 
conversion. Currently, atomically dispersed metal–nitrogen 
(M–N) sites-anchored carbon (M–N–C) materials is one of 
the most promising  CO2ER electrocatalysts for CO production, 
owing to its simple synthetic procedure and excellent cata-
lytic performance [15–19]. First, the M–N–C materials can be 
synthesized via a one-step pyrolysis of precursors contained 
carbon resources, nitrogen resources, and inorganic metal salt 
under optimized condition [20–24], and this strategy is a uni-
versal synthetic method that can be used to develop a series of 
M–N–C materials. Second, the electronic structure of central 
metal atom in M–N sites can be modified by the bonded N 
atoms, thus resulting in enhanced binding strength between 
the reaction intermediates and active M–N centers in their key 
step [25–28], promoting the catalytic activity and selectivity of 
M–N–C materials for  CO2-to-CO conversion. Despite certain 
progress on developing M–N–C catalysts, it still suffers from 
imprecisely regulating the category and coordination number 
of ligating N atoms that bind to central metal atom. To be 
precise, several categories of N atoms such as pyridinic N, 
pyrrolic N, and graphitic N can provide coordinated possibil-
ity with metal atoms to form M–N structure during pyrolysis 
process; meanwhile, accurate ligand number between N and 
central metal atoms is difficult to be controlled.

Herein, we developed a universal approach to synthesize 
a series of single metal atom–N (SAs–M–N, M = Fe, Co, 

Ni, Cu) species immobilized on graphitized carbon supports 
(SAs–M–N–C) via an in situ pyrolysis of metalloporphy-
rin molecules and MCA polymer that was originated from 
the self-assemble of melamine (M) and cyanuric acid (CA). 
The SAs–M–N–C catalysts consisted of ultrathin carbon 
nanosheets supported accurate coordination structures of four 
pyrrole-type N atoms bonded with single metal atom (pyrrole-
type M–N4). Benefitting from unique coordinated condition 
and discrepant intrinsic activity of pyrrole-type M–N4 sites in 
as-prepared SAs–M–N–C catalysts, SAs–Ni–N–C exhibited 
an excellent activity, selectivity, and stability for  CO2-to-CO 
conversion, in which the conversion started at low potential of 
− 0.3 V along with a small Tafel slope of 115 mV dec−1; mean-
while, a high Faradaic efficiency (F.E.) of 98.5% for CO pro-
duction and durable catalytic stability of 50 h were achieved at 
− 0.7 V. Experimental measurements revealed that the  CO2ER 
performance ranking of SAs–M–N–C was corresponding to 
the sequence of Ni > Fe > Cu > Co owing to the intrinsic nature 
of pyrrole-type M–N4 structures, in which the high  CO2ER 
performance catalyzed by SAs–Ni–N–C was appreciably supe-
rior to that of almost all previously reported M–N–C  CO2ER 
electrocatalysts to date. The aberration-corrected high-angle 
annular dark field scanning transmission electron microscopy 
(AC HAADF-STEM) confirmed the atomic distribution of 
isolated metal atoms in SAs–M–N–C; X-ray photoelectron 
spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) 
identified the accurate configuration of pyrrole-type M–N4 
centers with individual metal atom bonded by four pyrrole-
type N atoms. Furthermore, an integrated Zn–CO2 battery 
equipped with the cathode of SAs–Ni–N–C delivered a peak 
power density of 1.4 mW cm−2 and the maximum CO F.E. 
of 93.3% during its discharge process, realizing the practical 
feasibility of  CO2 conversion and electric energy output.

2  Experimental Section

2.1  Materials

Deionized water was used for whole experiments. Melamine 
 (C3H6N6) was purchased from Alfa Aesar Chemical Co., 
Ltd. Cyanuric acid  (C3H3N3O3), iron(III) tetraphenylpor-
phyrin chloride, cobalt(II) tetraphenylporphyrin, nickel(II) 
tetraphenylporphyrin, and copper(II) tetraphenylporphyrin 
were purchased from Tokyo Chemical Industry Co., Ltd. 
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The above chemicals were directly used as received without 
any further purification.

2.2  Preparation of SAs–M–N–C

The SAs–M–N–C samples were synthesized via a one-step 
in situ pyrolysis of metalloporphyrin molecules (Cu, Fe, 
Co, and Ni) on the surface of melamine (M) and cyanuric 
acid (CA)-polymerized polymer. First, 0.37 g (3.0 mmol) 
of M and 0.39 g (3.0 mmol) of CA were self-assembled 
in 40 mL of deionized water in an Erlenmeyer flask under 
ultrasonication condition to form a MCA polymer colloid. 
Then, the obtained MCA polymer colloid was separated by 
filtration and dried in vacuum at 60 °C for 10 h. Next, 1.0 g 
of solid MCA polymer was grinded with 0.2 g of metal-
loporphyrin to form a homogeneous mixed powder. Finally, 
the above mixture was placed in a tube furnace and heated 
at 700 °C for 2 h under  N2 atmosphere with a heating rate of 
5 °C min−1. After the calcination process, the corresponding 
black SAs-M-N-C product was obtained.

2.3  Preparation of N–C

The N–C was synthesized by direct pyrolysis of MCA poly-
mer without adding metalloporphyrin molecules under the 
same pyrolysis condition for SAs–M–N–C synthesis.

2.4  Characterization

The field-emission scanning electron microscopy (FESEM) 
(SU-8010 Hitachi) and HRTEM (Tecnai G2 F20 S-TWIN) 
images were taken to identify the morphologies of samples. 
The X-ray diffraction (XRD) measurements were performed 
on ZETIUM DY 2186, 4 kW to display the crystal structures 
of samples. The metal content in samples was quantified by 
inductively coupled plasma atomic emission spectroscopy 
(ICP-AES) performed on Vista Axial. The XPS spectra of 
samples were collected on the Escalab 250Xi using an Al 
Kα radiation. The XAS results were obtained at the beam-
line 1W1B of the Q9 Beijing Synchrotron Radiation Facility 
(Beijing, China) using a transmission mode to detect the 
coordination environment of samples. Liquid-phase  CO2ER 
products were identified by 1H NMR (600 MHz, Bruker 
AVANCE AV III 500), in which 600 µL of 0.5 M  KHCO3 
electrolyte after long-term  CO2ER electrolysis was mixed 

with 70 µL of 10 mM dimethyl sulfoxide (DMSO) in  D2O 
for 1H NMR analysis. The DMSO was used as an internal 
standard, and the solvent suppression was used to decrease 
the area of  H2O peak to make the CO2ER products peaks 
more clearly. Notably, all of the liquid-phase  CO2ER prod-
ucts can be identified by 1H NMR [29].

2.5  Electrochemical Measurements

Electrochemical measurements were tested on CHI 760E 
electrochemical workstation with a three-electrode cell 
(counter electrode: Pt wire; reference electrode: Ag/AgCl; 
working electrode: 1 × 1 cm2 carbon paper loaded with 
catalyst). For the working electrode, homogeneous ink 
(10 mg mL−1) consisting of 10 mg of sample, 100 µL of 
0.5% Nafion, and 900 µL of ethanol was prepared with soni-
cation and stirring. Then, 100 µL of suspension solution 
was dropped onto the surface of carbon paper with loading 
amount of 1.0 mg cm−2. The polarization curves were meas-
ured in 0.5 M  KHCO3 solution with a scan rate of 5 mV s−1. 
The ECSA-referred cyclic voltammetry (CV) curves were 
performed at the potential of − 0.35 V ~ − 0.45 V (vs. Ag/
AgCl). The EIS spectra were measured with a frequency 
ranging from 100 kHz to 10 mHz and an AC voltage with 
5 mV. The mentioned potentials versus reversible hydrogen 
electrode (RHE) were calculated by Eq. 1:

The 0.197 V is V�

Ag/AgCl vs. NHE
 at 25 °C, and the pH value of 

 CO2-saturated 0.5 M  KHCO3 solution is around 7.2.

2.6  Calculation of CO F.E

The Faradaic efficiency (F.E.) was calculated by Eq. 2:

where x represents the concentration of CO (GC data); n 
corresponds to the amount of collected gas (the volume of 
the collected gas V0 is 1.0 mL), calculated via n = PV0/RT 
(T = 299.15 K, P = 1.013 × 105 Pa, and R = 8.314 Nm K−1); 
Avogadro constant NA = 6.02 × 1023 mol−1; the number of 
transfer electron is 2e; I (mA) represents the total current 
when collecting the pending tested gas; time (t) to col-
lect 1.0 mL of gas is 3 s  (CO2 flow rate is 20 mL min−1); 
e = 1.602 × 10−19 C e−1.

(1)Evs.RHE = Evs.Ag/AgCl + 0.197V + 0.0592V + pH

(2)F.E. =
x × n × NA × 2e

I × t∕e
× 100%



 Nano-Micro Lett.          (2020) 12:108   108  Page 4 of 12

https://doi.org/10.1007/s40820-020-00443-z© The authors

2.7  Calculation of CO Turnover Frequency

In order to compare the catalytic activities of SAs–M–N–C 
with different metal concentrations, the turnover frequency 
(TOF) in SAs–M–N–C-catalyzed  CO2ER was calculated 
according to Eq. 3 [30]:

where ICO is the partial current for CO production, A; n is the 
transferred number of electron during  CO2ER, which is 2 for 
CO production; F is the Faradaic constant, 96,485 C mol−1; 
mcatalysts is the mass of catalysts loaded on the working elec-
trode, which is 1.0 mg in our system; m is the metal con-
centration in SAs–M–N–C; M is the corresponding atomic 
mass of central metal.

The TOF values were calculated at the potential where 
the SAs–M–N–C delivered their maximum  CO2ER perfor-
mance for CO production. The TOF values of SAs–Fe–N–C, 
SAs–Co–N–C, SAs–Ni–N–C, and SAs–Cu–N–C for CO 
production were calculated to be 26.7, 11.3, 114.9, and 
14.9 h−1, respectively, suggesting that the catalytic activities 
of SAs–M–N–C followed the sequence of Ni > Fe > Cu > Co.

(3)TOF(h−1) =
ICO

/

nF

mcatalyst × m∕M
× 3600

3  Results and Discussion

A family of SAs–M–N–C (M = Fe, Co, Ni, Cu)  CO2ER cata-
lysts were fabricated via a one-step in situ pyrolysis of met-
alloporphyrin molecules and MCA polymer derived from 
the polyreaction of M and CA. As shown in Fig. 1a, the 
M and CA precursors were firstly self-assembled to form 
MCA polymer, and then, the composite of metalloporphyrin 
loaded on MCA polymer was carbonized at 700 °C for 2 h 
under  N2 atmosphere. During the carbonization process, the 
MCA polymer was gradually evolved into graphitized carbon 
nanosheets, while the local chemical environment of pyrrole-
type M–N4 structures in metalloporphyrin molecules was 
well preserved and in situ anchored into the graphitic car-
bon frameworks. FESEM and TEM images of SAs–M–N–C 
showed ultrathin carbon nanosheets morphologies with a 
horizontal size of several hundred nanometers and a few-
layer thickness (Figs. 1b–c and S1–S2), and no obvious 
metal nanoparticles (NPs) were formed on the nanosheets 
surface. The presence of typical D and G bands located at 
1354 and 1582 cm−1 in Raman spectra confirmed the fea-
ture of graphitic carbon structure in SAs–M–N–C (Fig. S3). 
XRD patterns further excluded the existence of metal NPs in 
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SAs–M–N–C with the absence of corresponding characteris-
tic diffraction peaks of metallic phase (Fig. 1d). ICP-AES of 
SAs–M–N–C quantified the high loading amounts of central 
metals in the SAs–Fe–N–C, SAs–Co–N–C, SAs–Ni–N–C, 
and SAs–Cu–N–C with the corresponding values of 5.49, 
3.69, 3.77, and 5.05 wt%, respectively (Table S1). Further, 
the AC HAADF-STEM images of SAs–M–N–C displayed 
the homogenously distributed and isolated bright dots with 
single atomic diameter of ~ 0.25 nm on the surface of carbon 
nanosheets, which could be attributed to the isolated metal 
atoms due to its larger atomic number than C or N atoms 
(Fig. 2a–d) [31–33]. Additionally, large-scale elemental 
distribution mapping images of SAs–M–N–C from the AC 
HAADF-STEM images displayed the uniform distribution of 
metal and N atoms on the carbon nanosheets, demonstrating 
the atomic dispersion of metal species and successful dop-
ing of N atoms into carbon frameworks (Fig. 2e–h), which 
was further supported by the emerged characteristic peaks 
of C, N, and metal elements in XPS survey spectra (Fig. 
S4). Based on the above results, it can be concluded that the 
isolated metal species in the SAs–M–N–C were atomically 
dispersed on the surface of graphitic carbon nanosheets with 
high density. 

For the analysis of coordinated environment of metal 
atoms in SAs–M–N–C, taking the SAs–Ni–N–C as an 

example, high-resolution Ni 2p, N 1s XPS spectra, and XAS 
spectra were conducted. Figure 3a displays high-resolution 
Ni 2p XPS spectrum of SAs–Ni–N–C, in which the valence 
state of atomically dispersed Ni species was fitted to be  Ni2+ 
and  Ni3+ according to the peaks located at binding energies 
of 855.2/872.3 and 855.7/872.9 eV, respectively, whereas 
the  Ni0 with the peak located at 852.6 eV was not observed 
[34], suggesting that the Ni species in SAs–Ni–N–C exist 
in an oxidized state instead of metallic Ni. This result was 
inconsistent well with XPS spectra of controlled Ni–por-
phyrin sample, in which the valence state of Ni species 
was also fitted to be  Ni2+ and  Ni3+ based on corresponding 
characteristic peaks, thus excluding the existence of metallic 
 Ni0. Based on above results, it can be found that the valence 
state of Ni atoms was not transformed during the pyroly-
sis process, and the Ni species was well preserved in the 
atomic level and not aggregated into the Ni NPs. Addition-
ally, high-resolution N 1s XPS spectra of SAs–Ni–N–C and 
pure N-doped carbon nanosheets (denoted as N–C, Fig. S5) 
that were synthesized under the same pyrolysis condition as 
SAs–Ni–N–C but free of adding Ni–porphyrin molecules 
are shown in Fig. 3b. As compared with N–C, the charac-
teristic peak of pyrrolic N in SAs–Ni–N–C was chemically 
shifted with 0.5 eV, whereas no changes on the character-
istic peaks of other types of N dopants were observed on 
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SAs–Ni–N–C. These results demonstrated that the chemi-
cal environment of pyrrolic N in SAs–Ni–N–C was differ-
ent from that in N–C sample, possibly originated from the 
formation of pyrrole-type Ni–N structures in SAs–Ni–N–C 
[35]. Such unique coordination category in SAs–Ni–N–C 
could be attributed to the reserved pyrrole-type Ni–N4 
architectures originated from Ni–porphyrin molecules dur-
ing pyrolysis, since high thermal stability of Ni–porphyrin 
preserved its local chemical structures [36], as confirmed 
by thermogravimetric analysis (TGA) results (Fig. S6). Fur-
ther, the XAS spectra were used to accurately identify the 
local geometric structures of SAs–Ni–N–C at atomic level. 
Figure 3c displays the Ni k-edge X-ray absorption near edge 

structure (XANES) spectra of SAs–Ni–N–C with NiO and 
Ni foil as references, in which the adsorption edge energy of 
SAs–Ni–N–C was higher than that of Ni foil and NiO, indi-
cating that the valence state of Ni species in SAs–Ni–N–C 
was a little bit higher than +2 [37, 38], inconsistent well with 
the fitting results of  Ni2+ and  Ni3+ from Ni 2p XPS spectra. 
The Fourier-transformed Ni k-edge k3-weighted extended 
X-ray absorption fine structure (EXAFS) in R space con-
firmed that the characteristic peak of Ni–Ni bonds from the 
Ni foil was located at 2.17 Å (Fig. 3d), which was absent 
in the spectrum of SAs–Ni–N–C, demonstrating the inex-
istence of Ni-based clusters/particles in the SAs–Ni–N–C. 
Meanwhile, the peaks ranged from 1.24 to 1.7 Å can be 
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attributed to the first coordination shell of Ni–N bonds, 
which was inconsistent with the peaks in standard Ni–por-
phyrin [27, 30, 39, 40], suggesting the successful formation 
of Ni–N structures in the SAs–Ni–N–C. Since the charac-
teristic peak of Ni–N bonds in Fig. 3d was located at the 
similar position with the Ni–O bonds in NiO, the wavelet 
transform (WT) of Ni k-edge EXAFS oscillations was fur-
ther analyzed, and the results confirmed that the backscat-
tering atoms bonded with Ni atom were indeed N atoms 
instead of O atoms because the WT-EXAFS analysis can 
provide the resolutions in both R and k spaces [21, 41]. In 
particular, the maximum intensity at 4.0 Å that associated 
with Ni–N bonds from SAs–Ni–N–C was quite different to 
that of Ni–O bonds at 7.5 Å in NiO (Fig. 3e). The fitting 
results of FT-EXAFS from SAs–Ni–N–C further revealed 
that the coordination number of Ni–N bonds was quanti-
fied to be four (Fig. 3f, g and Table S2). Based on the XPS 
and XAS fitting results, one can conclude that the local 
geometric structure of SAs–Ni–N–C was accurately con-
firmed to be the chemical configuration of single Ni atom 
coordinated with four pyrrolic N atoms (Fig. 3h). Like-
wise, the metal species in SAs–Fe–N–C, SAs–Co–N–C, 
and SAs–Cu–N–C were confirmed to be an oxidized state 
instead of metallic phase (Fig. S7); combined with the AC 
HAADF-STEM images of the above three catalysts, it can 
be deduced that the corresponding metal atoms were dis-
tributed with atomic level in SAs–Fe–N–C, SAs–Co–N–C, 
and SAs–Cu–N–C. Further, high-resolution N 1s spectra of 
SAs–Fe–N–C, SAs–Co–N–C, and SAs–Cu–N–C all exhib-
ited a chemical shift of pyrrolic N characteristic peak with 
respect to that of the N–C (Fig. S8), demonstrating the for-
mation of pyrrole-type M–N structures in the above three 
samples. Besides, the fitting results of FT-EXAFS from 
SAs–Fe–N–C, SAs–Co–N–C, and SAs–Cu–N–C all con-
firmed that the coordination number of M–N bonds in cor-
responding sample was quantified to be four (Figs. S9, S10 
and Table S2), revealing that the local geometric structures 
in SAs–Fe–N–C, SAs–Co–N–C, and SAs–Cu–N–C were 
similar to that in SAs–Ni–N–C in the form of pyrrole-type 
M–N4 structures. These results demonstrated that this in situ 
pyrolysis of metalloporphyrin molecules loaded on surface 
of MCA polymer was a universal method to accurately syn-
thesize atomically dispersed pyrrole-type M–N4 structures.

The electrochemical  CO2ER activity and selectivity of 
as-prepared SAs–M–N–C catalysts were performed in 
H-cell reactor with a typical three-electrode system. The 

linear sweep voltammetry (LSV) curves of SAs–M–N–C 
catalysts measured in  CO2- and Ar-saturated 0.5  M 
 KHCO3 solutions are shown in Fig. S11. Considering that 
the difference of delivered current densities between the 
 CO2-saturated one and the Ar-saturated counterpart was 
originated from the  CO2ER catalysis, the SAs–Ni–N–C 
displayed the highest catalytic activity for  CO2ER among 
all investigated SAs–M–N–C samples. To further evaluate 
the selectivity of SAs–M–N–C for  CO2ER by calculating 
Faradaic efficiency (F.E.), gaseous and liquid-phase prod-
ucts from  CO2ER were quantified by gas chromatography 
(GC) and 1H nuclear magnetic resonance spectroscopy 
(1H NMR). Notably, the gaseous products produced from 
SAs–M–N–C-catalyzed  CO2ER were identified to be CO 
and  H2 gases, and the total F.E. of CO and  H2 was calculated 
to be 100%, thus excluding the formation of liquid-phase 
products, as supported by 1H NMR results (Fig. S12). The 
corresponding F.E.s for CO and  H2 products are shown in 
Fig. 4a, b, in which the SAs–Ni–N–C and SAs–Fe–N–C 
delivered a much higher CO F.E. than the SAs–Cu–N–C 
and SAs–Co–N–C under all the applied potentials, demon-
strating high selectivity of SAs–Ni–N–C and SAs–Fe–N–C 
for  CO2ER catalysis. Although the SAs–Ni–N–C exhibited 
a slightly lower  CO2ER selectivity for CO generation than 
the SAs–Fe–N–C under the relatively positive potentials of 
− 0.3 ~ − 0.6 V, the former delivered a higher current density 
within this interval than the latter. Besides, with the applied 
potentials increased negatively, the CO F.E. of SAs–Ni–N–C 
was obviously superior to that of SAs–Fe–N–C and reached 
the maximum of 98.5% at − 0.7 V. The superior  CO2ER 
performance of SAs–Ni–N–C with respect to SAs–Fe–N–C 
was further revealed by their partial current densities for CO 
production (Fig. 4c). These results suggested that, among the 
family of SAs–M–N–C catalysts, SAs–Ni–N–C was more 
suitable for the practical application in  CO2ER because it 
delivered large current density and high selectivity dur-
ing  CO2ER process. From the results of electrochemical 
impedance spectroscopy (EIS) of SAs–M–N–C samples, the 
SAs–Ni–N–C possessed the lowest charge-transfer resist-
ance among all the investigated catalysts for  CO2ER, which 
was supported by the smallest radius in the Nyquist plot 
(Fig. 4d) [42]. Additionally, SAs–Ni–N–C-catalyzed  CO2ER 
delivered a much lower Tafel slope of 115 mV dec−1 than 
that from the SAs–Fe–N–C (124 mV dec−1)-, SAs–Co–N–C 
(221  mV  dec−1)-, and SAs–Cu–N–C (216  mV  dec−1)-
catalyzed counterparts (Fig. 4e), demonstrating the fastest 
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reaction kinetics in SAs–Ni–N–C-catalyzed  CO2ER process 
[22].

In order to clarify the intrinsic property of isolated M–N 
centers in SAs–M–N–C, the  CO2ER performance of control 
N–C sample was evaluated (Fig. S13). Although the con-
tent of doped N species in N–C was much higher than that 
in SAs–M–N–C, the N–C exhibited a finite  CO2ER perfor-
mance in terms of catalytic activity, CO selectivity, and reac-
tion kinetics with respect to SAs–M–N–C. This result indi-
cated that the M–N centers played the key role in enhancing 
 CO2ER performance. Furthermore, for precisely evaluating 
the intrinsic nature of SAs–M–N–C, electrochemical active 
surface area (ECSA) of SAs–M–N–C samples was calculated 

via measuring the corresponding double-layer capacitance 
(Figs. 4f and S14) [39, 43]. The ECSA of SAs–Fe–N–C, 
SAs–Co–N–C, SAs–Cu–N–C, and SAs–Ni–N–C was calcu-
lated to be 102, 98, 32, and 35 cm2, respectively. Despite the 
more exposed numbers of Fe–N and Co–N centers caused by 
the larger ECSAs in SAs–Fe–N–C and SAs–Co–N–C than 
that of Ni–N centers in SAs–Ni–N–C, the latter displayed 
the largest ECSA-normalized partial current density for CO 
production among the above investigated samples (Fig. 4g), 
suggesting that the superior  CO2ER activity and selectiv-
ity of SAs–Ni–N–C are mainly attributed to high intrinsic 
property of the Ni–N sites, instead of other extrinsic factors, 
like ECSA. Besides, the ECSA-normalized partial current 
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density for CO production by SAs–M–N–C samples also 
revealed the intrinsic property of M–N sites following the 
sequence of Ni–N > Fe–N > Cu–N > Co–N, inconsistent well 
with the sequence for CO selectivity. These results demon-
strated that the  CO2ER performance of SAs–M–N–C was 
strongly depend on the catalytic nature of central transition 
metal in M–N sites, giving the catalytic activity sequence 
of Ni > Fe > Cu > Co. Additionally, SAs–Ni–N–C also dis-
played a favorable  CO2ER stability over 50 h of continuous 
reaction under a constant potential of -0.7 V (Fig. 4h), dur-
ing which a slight attenuation was observed in both total 
geometric current density and CO F.E. after operated for 
50 h, whereas the CO F.E. was still maintained at above 
80%, illustrating a superior performance of SAs–Ni–N–C 

for catalyzing  CO2ER with high selectivity and stability. 
Such excellent activity and stability of SAs–Ni–N–C for 
 CO2ER catalysis were superior to that of the most previ-
ously reported M–N–C  CO2ER electrocatalysts (Table S3).

In order to further extend the practical application of 
 CO2ER catalyzed by SAs–M–N–C, taking the SAs–Ni–N–C 
as an example, an aqueous Zn–CO2 battery composed of 
anode with Zn foil and cathode with SAs–Ni–N–C was 
designed to achieve the reaction of  CO2ER along with the 
electricity output during its discharge process (Fig. 5a) 
[44–47], in which 6.0 M KOH with 0.2 M Zn(Ac)2 solution 
was used as anolyte and 0.5 M  KHCO3 solution was used as 
catholyte; bipolar membranes were set to maintain the pH 
value of two chambers. The charge–discharge polarization 
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curves shown in Fig. 5b demonstrated the rechargeable char-
acterizations of this Zn–CO2 battery equipped with the cath-
ode of SAs–Ni–N–C. Notably, the Zn–CO2 battery delivered 
a maximum power density of 1.4 mW cm−2 along with the 
current density of 5.3 mA cm−2 during the discharge pro-
cess (Fig. 5c), which was much higher than the previously 
reported Zn–CO2 batteries equipped with the cathodes of 
atomically dispersed metal-anchored carbon materials (such 
as 0.21 mW cm−2 for NiPG [44] and 0.62 mW cm−2 for 
Cu–N2/GN nanosheets [47].) Meanwhile, the integrated 
Zn–CO2 battery with SAs–Ni–N–C cathode displayed a 
superior durability under cyclic charging and discharging 
processes with a constant current density of 1.0 mA cm−2 
(Fig.  5d). Additionally, the  CO2ER performance of 
SAs–Ni–N–C during discharge process of Zn–CO2 battery 
was identified, where the CO F.E. was achieved to the maxi-
mum of 93.3% under the power density of 0.7 mW cm−2 
(Fig. 5e). Based on the above results, we conclude that the 
Zn–CO2 battery equipped with the SAs–Ni–N–C cathode 
can effectively realize the energy conversion of chemical 
energy into electric energy during its discharge process, that 
is, the occurring of the redox reactions achieved the reduc-
tion of  CO2 into CO, and the electricity output was synchro-
nously realized in the circuit. Consequently, both the bulbs 
and homemade LED array were lighted by the integrated 
Zn–CO2 battery (Fig. 5f). Furthermore, the emerged inter-
section at a voltage of 1.37 V between the charge polariza-
tion curves of this Zn–CO2 battery and the current–voltage 
(J–V) curve of solar cell (irradiated with Xe lamp, AM 1.5G, 
100 mW cm−2) suggested the practical feasibility of using 
the solar cell to charge the Zn–CO2 battery (Fig. 5g). In 
this respect, solar cell irradiated under natural solar energy 
was used to effectually charge the Zn–CO2 battery, as fea-
tured by the occurring of anodic oxygen evolution reaction 
(Fig. 5h) [44, 46, 48], achieving the promising process of 
energy storage.

4  Conclusions

In summary, we developed a universal principle for in situ 
pyrolysis of the MCA polymer-supported metalloporphy-
rin molecules to synthesize a family of atomically dis-
persed SAs–M–N–C catalysts. The experimental results 
revealed that the isolated metal species was bonded by 
pyrrolic N atoms and atomically distributed on the 

ultrathin carbon nanosheets with accurate pyrrole-type 
M–N4 structures. Owing to the specific nature of pyrrole-
type M–N4 structure in SAs–M–N–C catalysts, the  CO2ER 
performances catalyzed by SAs–M–N–C followed the 
sequence of Ni > Fe > Cu > Co, in which the SAs–Ni–N–C 
catalyst exhibited an excellent performance in  CO2ER with 
the measured onset potential and Tafel slope of − 0.3 V 
and 115 mV  dec−1, along with the detected maximum CO 
selectivity and long-term stability of 98.5% and 50 h at 
the optimized − 0.7 V, respectively. Such superior  CO2ER 
performance achieved by SAs–Ni–N–C was outperforming 
almost all of the previously reported M–N–C electrocata-
lysts. Additionally, an integrated Zn–CO2 battery equipped 
the SAs–Ni–N–C cathode achieved the energy conversion 
and output with the maximum CO F.E. of 93.3% and peak 
power density of 1.4 mW cm−2. The developed strategy 
for synthesizing accurate pyrrole-type M–N4 sites in 
SAs–M–N–C catalysts as introduced in this work may give 
an alternative approach to construct the structurally con-
trollable M–N4 centers supported on carbon materials for 
other promising electrochemical reactions, like hydrogen 
evolution reaction, nitrogen reduction reaction, and oxygen 
evolution reaction.
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