Supporting Information for

The principle of Introducing Halogen Ions Into β-FeOOH:

Controlling Electronic Structure and Electrochemical Performance

Dongbin Zhang¹, Xuzhao Han¹, Xianggui Kong^{1, *}, Fazhi Zhang¹, Xiaodong Lei^{1, *}

¹State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, PO Box 98, Beijing 100029, People's Republic of China

*Corresponding authors. E-mail: leixd@mail.buct.edu.cn (X. Lei); kongxg@mail.buct.edu.cn (X. Kong)

Supplementary Figures and Tables

Fig. S1 a Crystal structure of β -FeOOH; **b** radius of halogen anions for F⁻, Cl⁻ and Br⁻; **c** the adsorption energy of β -FeOOH for halogen anions, including F⁻, Cl⁻, and Br⁻

Ion	Bare ion radius (Å)	Hydrated radius (Å)
F	1.16	3.52
Cl	1.64	3.32
Br	1.80	3.30

 Table S1 Comparison of different halide ions radius

Redox reaction	Potential
$Fe^{3+}+e \longrightarrow Fe^{2+}$	+0.77
$F_2 + 2e \longrightarrow 2F^-$	+2.87
$Cl_2 + 2e \longrightarrow 2Cl^-$	+1.36
$Br_2 + 2e \longrightarrow 2Br^-$	+1.07
$I_2 + 2e \longrightarrow 2I^-$	+0.54

 Table S2 Comparision of standard electrode potentials

Fig. S2 The EDS of β-FeOOH(I), inset the corresponding SEM image **Table S3** Comparison of the length of different Fe-Os bond

Sample	Fe-O1	Fe-O2	Fe-O3	Fe-O4	Fe-O5	Fe-O6	Fe-O7	Fe-O8
β-FeOOH	1.957	2.024	3.003	2.407	1.957	2.015	3.115	2.450
β-FeOOH(F)	1.952	2.117	2.504	2.428	1.883	1.995	2.488	2.543
β-FeOOH(Cl)	1.967	1.923	2.168	2.664	2.285	2.207	2.809	3.041
β-FeOOH(Br)	1.844	2.109	2.099	1.953	2.682	1.870	2.873	2.989

Fig. S4 SEM and HRTEM images of β -FeOOH, β -FeOOH(F), β -FeOOH(Cl) and β -FeOOH(Br). **a-d** SEM images; **e-h** EDS and mapping images; **i-p** HRTEM images, inset the FFT images

Samples	Elements	Atomic%
	Fe	25.73
β-FeOOH	0	74.27
	Fe	22.17
β-FeOOH(F)	0	64.13
	F	13.70
	Fe	13.79
β-FeOOH(Cl)	0	75.54
	Cl	10.67
	Fe	13.96
β-FeOOH(Br)	0	75.35
	Br	10.69

Table S4 EDS results of samples

Fig. S5 The CV and GCD of a, b β -FeOOH; c, d β -FeOOH(F); e, f β -FeOOH(Cl) and g, h β -FeOOH(Br)

Fig. S6 a Rate capacity and **b** cyclic stability of β -FeOOH, β -FeOOH(F), β -FeOOH(Cl) and β -FeOOH(Br)

Materials	Potential Window/V	Specific Capacitance	Rate Capacity/%	Cyclic Stability/%	Refs.
β- FeOOH(F)	-1.1-0 V	$391.9 \text{ F} \cdot \text{g}^{-1} \text{ at}$ 1 A g ⁻¹	70.17% from 1 to 10 A g ⁻¹	80.82% after 2000 cycles	This work
FeOOH nanorod	-1.08- 0 V	396 $F \cdot g^{-1}$ at 0.5 A g ⁻¹	64% from 0.5 to 10 A g ⁻¹	83% after 500 cycles	[S1]
β-FeOOH	-0.850.1 V	116 $F \cdot g^{-1}$ at 0.5 A g^{-1}	80% from 0.5 to 1.5 A g ⁻¹	Not give	[S2]
Metal- FeOOH	-10.6 V	463.18 $F \cdot g^{-1}$ at 0.1 A g ⁻¹	$\sim 20\%$ from 0.11 to 10 A g ⁻¹	96.36% after 1000 cycles	[83]
FeOOH/R GO	-0.8- 0 V	142.0 $F \cdot g^{-1}$ at 1 A g ⁻¹	90% from 1 to 40 A g ⁻¹	~90% after 1000 cycles	[S4]
Fe ₃ O ₄ /FeO OH	-1.1- 0 V	$300 \text{ F} \cdot \text{g}^{-1}$ at 2 mV s ⁻¹	~25% from 2 to 250 mV s ⁻¹	~80% after 150 cycles	[85]
Amorphou s FeOOH/Ti 3C ₂ T _x	-0.8- 0 V	217 $F \cdot g^{-1}$ at 1 A g ⁻¹	64% from 1 to 12 A g ⁻¹	82% after 3000 cycles	[S6]

Table S5 Comparison of electrochemical performances of FeOOH-based electrodes

FeOOH@		$7.013 \text{ mF} \cdot \text{cm}^{-2}$	32.22%	87.8%	
SpOr	-0.70.2 V	at 0.20 mA cm ⁻	from 0.20 to	ofter 2000 cycles	[S7]
51102		2	2.26 mA cm^{-2}	after 2000 cycles	

Table S6 Concentration of Fe element in electrolyte before and after electrochemical
tests, when the β -FeOOH(F) as the working electrode

Fig. S7 The XRD **a** and XPS **b**, **c** measurements of β -FeOOH(F) electrode before and after electrochemical tests

Fig. S8 ex-XRD tests of β -FeOOH(F) electrode during the charge and discharge test

Name		Position	%At Conc
	P1	1072.60	1.46
	P2	1072.63	1.44
Na 1s	Р3	1072.32	0.70
	P4	1072.38	2.44
	P5	1072.74	2.57
Name		Position	%At Conc
	P1	712.28	4.10
	P2	712.40	4.29
Fe 2p	P3	712.73	4.41
	P4	712.54	4.22
	P5	712.02	4.13
	40		
	30		— s orbit
		Ef	— p orbit — d orbit
	20		— Sum
	10-	M M	ALCA
	ະ ຍຸ		
	ter 4 -	F	s p
	ensity o		Sum
			s p Sum
	8 6 4 2 0	Br Er	s p Sum
	-25 -	20 -15 -10 -5 0 5 Energy /eV	10 15

Table S7 XPS test results of β -FeOOH(F) under different charge and discharge potentials

Fig. S9 PDOS of β -FeOOH and β -FeOOH(X)s

Fig. S10 Solid UV-vis absorption spectra of β -FeOOH and β -FeOOH(X)s

Fig. S11 Illustration of charge-transfer energy of a β -FeOOH, b β -FeOOH(F), c β -FeOOH(Cl) and d β -FeOOH(Br)

Fig. S12 Comparison of charge-transfer energy of β -FeOOH and β -FeOOH(X)s

Sample	β-FeOOH	β-FeOOH(F)	β-FeOOH(Cl)	β-FeOOH(Br)
Fe1	1.26	1.14	1.10	1.15
Fe2	1.09	1.22	1.12	1.19
Fe3	1.03	1.43	1.23	1.17
Fe4	1.11	1.24	1.08	1.20
Average	1.1225	1.2575	1.1320	1.1775

 Table S8 Mulliken charge analysis

Supplementary References

[S1]J. Li, D. Chen, Q. Wu, X. Wang, Y. Zhang, Q. Zhang, FeOOH nanorod arrays aligned on eggplant derived super long carbon tube networks as negative electrodes for supercapacitors. New J. Chem. 42(6), 4513-4519 (2018). https://doi.org/10.1039/c7nj04662f

[S2]W.-H. Jin, G.-T. Cao, J.-Y. Sun, Hybrid supercapacitor based on MnO₂ and columned FeOOH using Li₂SO₄ electrolyte solution. J. Power Sources 175(1), 686-691 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.115

- [S3]R. Barik, B. K. Jena, M. Mohapatra, Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Adv. 7(77), 49083-49090 (2017). https://doi.org/10.1039/c7ra06731c
- [S4]H.-W. Chang, C.-L. Dong, Y.-R. Lu, Y.-C. Huang, J.-L. Chen et al., X-ray

absorption spectroscopic study on interfacial electronic properties of FeOOH/reduced graphene oxide for asymmetric supercapacitors. ACS Sustain. Chem. Eng. **5**(4), 3186-3194 (2017). https://doi.org/10.1021/acssuschemeng.6b02970

- [S5]L. O'Neill, C. Johnston, P. S. Grant, Enhancing the supercapacitor behaviour of novel Fe₃O₄/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J. Power Sources 274, 907-915 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.151
- [S6]X. Zhang, Y. Liu, S. Dong, Z. Ye, Y. Wei, Low-temperature synthesized nanocomposites with amorphous feooh on Ti₃C₂T_x for supercapacitors. J. Alloy. Compd. 744, 507-515 (2018). https://doi.org/10.1016/j.jallcom.2018.02.080
- [S7]R. Li, X. Ren, F. Zhang, C. Du, J. Liu, Synthesis of Fe₃O₄@SnO₂ core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem. Commun. 48(41), 5010-5012 (2012). https://doi.org/10.1039/c2cc31786a