Supporting Information for

A Superaerophobic Bimetallic Selenides Heterostructure for Efficient

Industrial-level Oxygen Evolution at Ultra-High Current Densities

Jiaxin Yuan¹, Xiaodi Cheng¹, Hanqing Wang^{1, 6}, Chaojun Lei¹, Sameer Pardiwala¹, Bin Yang¹, Zhongjian Li¹, Qinghua Zhang⁴, Lecheng Lei¹, Shaobin Wang^{5, *}, Yang Hou^{1, 2, 3, *}

¹Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

²Institute of Zhejiang University - Quzhou, Quzhou 324000, People's Republic of China

³Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China

⁴Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

⁵School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, SA, Australia

⁶Zhejiang Province Hangzhou No. 14 High School, Hangzhou 310027, People's Republic of China

*Corresponding authors. E-mail: yhou@zju.edu.cn (Yang Hou); shaobin.wang@adelaide.edu.au (Shaobin Wang)

S1 Synthesis of Ir/C/NiFe and Pt/C/NiFe

A mixture of 9.0 mg of Ir/C, 810 μ L of Nafion (5%), and 90 μ L of ethanol was ultrasonicated for 30 min, and then oscillated to obtain uniform dispersion. After the Ir/C dispersion dropped onto the treated NiFe alloy, the Ir/C/NiFe was gradually dried in a fume hood. The loading amount of Ir/C was ~5.0 mg cm⁻². The similar procedure was used to prepare Pt/C/NiFe.

S2 Electrochemical Measurements

Electrochemical activity tests were operated in a traditional three-electrode system at room temperature, using a carbon rod and an Ag/AgCl electrode as the counter and reference electrodes, respectively. The NiSe₂/NiFe₂Se₄@NiFe was used as the working electrode and the electrolyte was 1.0 M KOH solution. During the controlled

experiments, the evenly dispersed commercial Pt/C and Ir/C samples were loaded onto the surface of clean NiFe alloy as the working electrodes.

The OER curves were normalized by electrochemical surface area (ECSA) to eliminate the influence of the ECSA on the performance comparisons. The ECSA-normalized current density for as-prepared samples was calculated as below: ECSA-normalized current density = current density $\times C_s/C_{dl}$

where C_s is the specific capacitance, and 0.04 mF cm⁻² is adopted as the value of C_s based on previously reported OER catalysts in alkaline solution [S1].

Calculation for Faradaic Efficiency: Electrolysis was performed by quantitative gas chromatography (GC) under a constant potential (1.55, 1.60, 1.65, 1.70, and 1.75 V) running for 20 min in a custom-built H-type cell in which the column Pt electrode is placed in one compartment while the Ag/AgCl electrode and NiSe₂/NiFe₂Se₄@NiFe electrode are placed in another. The product was subsequently detected by a thermal conductivity detector (TCD) in quantitative GC equipment. Atmospheric N₂ was used as an internal standard. The Faradaic efficiency was calculated by Eq. S1:

Faradic efficiency % = 4nF/Q (S1)

Where F and n are the Faraday constant and the amount of produced O₂, respectively; Q is the total amount of charge flowed past the electrochemical cell [S2, S3].

Overall-water-splitting measurements were performed in a two-electrode system consisting of NiSe₂/NiFe₂Se₄@NiFe as anode and cathode. The LSV curve for overall-water-splitting was recorded at a rate of 5 mV s⁻¹ in 1.0 M KOH.

The iR compensation was executed based on Eq. S2:

$$E = E_0 - iR \tag{S2}$$

where E (unit V) is the potential after *iR* compensation at the current of *i* (unit A), E_0 (unit V) is the potential from the polarization curve, *i* is the current at E_0 from the polarization curve, and *R* (unit ohm) is the resistance obtained from the EIS result.

S3 Formation Mechanism

The specific reaction mechanism of the formation of NiSe₂/NiFe₂Se₄@NiFe heterostructure was provided. During the synthesis process, two main oxidation and reduction reactions occurred under vacuum condition (Eqs. S3 and S4) as below:

$$Ni^{0} + Se^{0} \rightarrow NiSe_{2} (300 \text{ }^{\circ}C)$$
 (S3)

$$Ni^{0} + Se^{0} + Fe^{0} \rightarrow NiFe_{2}Se_{4} (300 \text{ }^{\circ}C)$$
 (S4)

From Eqs. S3 and S4, the NiSe₂ and NiFe₂Se₄ could be generated by the thermal selenization treatment of Ni⁰ and Fe⁰ species (e.g. NiFe alloy), which is consistent well with the previously reported results [S4, S5].

S4 Supplementary Figures

Fig. S1 (a) Polarization curves of NiSe₂/NiFe₂Se₄@NiFe, NiFe 40 mg Se-300, and NiFe 80 mg Se-300. (b) Polarization curves of NiSe₂/NiFe₂Se₄@NiFe, NiFe-Se-200, and NiFe-Se-400

Fig. S2 ECSAs of NiFe-Se-200 (a), NiSe₂/NiFe₂Se₄@NiFe (b), and NiFe-Se-400 (c)

Fig. S3 C_{dl} (**a**) and Nyquist plots (**b**) of NiFe-Se-200, NiSe₂/NiFe₂Se₄@NiFe, and NiFe-Se-400

The electrochemical double layer capacitances (C_{dl}) showed that the C_{dl} of 33.67 mF cm⁻² for NiSe₂/NiFe₂Se₄@NiFe was higher than the 21.87 mF cm⁻² for NiFe-Se-200 and 14.94 mF cm⁻² for NiFe-Se-400, illustrating that the NiSe₂/NiFe₂Se₄@NiFe possessed extraordinary OER activity with more active surface area compared with the NiF-Se-200 and NiFe-Se-400. The electrochemical impedance spectroscopy (EIS) showed a much smaller charge-transfer resistance for NiSe₂/NiFe₂Se₄@NiFe as compared with that of NiFe-Se-200 and NiFe-Se-400, suggesting a fast electron transfer ability in NiSe₂/NiFe₂Se₄@NiFe.

Fig. S4 TEM image of NiSe2/NiFe2Se4@NiFe

Fig. S5 (a-b) HRTEM images of NiSe₂/NiFe₂Se₄@NiFe

Fig. S6 HRTEM image of NiSe₂/NiFe₂Se₄@NiFe

Fig. S7 XRD pattern of NiSe₂/NiFe₂Se₄@NiFe

Fig. S8 XPS survey spectrum of NiSe₂/NiFe₂Se₄@NiFe

Fig. S9 Faradaic efficiency of NiSe₂/NiFe₂Se₄@NiFe for OER

Fig. S10 Multi-step chronopotentiometric curve for NiSe₂/NiFe₂Se₄@NiFe

Fig. S11 ECSAs of (a) NiSe₂/NiFe₂Se₄@NiFe, (b) NF-Se, and (c) IF-Se

Fig. S12 Nyquist plots of NiSe₂/NiFe₂Se₄@NiFe, Ni_{0.7}Fe_{0.3}-Se, and Ni_{0.5}Fe_{0.5}-Se

Fig. S13 HRTEM image of NiSe₂/NiFe₂Se₄@NiFe after OER tests

The characteristic spacing distance of 0.27 nm corresponds to the (210) plane of NiSe₂, while the characteristic distance of 0.23 nm is corresponded to the (211) plane of NiFe₂Se₄, indicating the existence of NiSe₂ and NiFe₂Se₄ in the NiSe₂/NiFe₂Se₄@NiFe after OER tests. Meanwhile, an amorphous oxide layer with a thickness of 1-2 nm was observed at the boundary of the NiSe₂/NiFe₂Se₄@NiF after OER tests, supporting the conversion of partial NiSe₂/NiFe₂Se₄@NiF into FeOOH and NiOOH species.

Fig. S14 Multi-potential steps curve for NiSe₂/NiFe₂Se₄@NiFe

Fig. S15 Polarization curves of NiSe₂/NiFe₂Se₄@NiFe in 1.0 M KOH at 25 °C and 10.0 M KOH at 25 °C

Fig. S16 Chronoamperometry curve with the NiSe₂/NiFe₂Se₄@NiFe as electrode at 500 mA cm⁻² without iR compensation. Electrolyte: 1.0 M KOH

Fig. S17 Polarization curve of NiSe₂/NiFe₂Se₄@NiFe for HER

Fig. S18 The OER performances of NiSe₂/NiFe₂Se₄@NiFe, NF-Se, IF-Se, and Ir/C/NiFe samples to achieve current density of 10 mA cm⁻² in 1.0 M KOH at 25 °C

Fig. S19 Tafel plots of NiSe₂/NiFe₂Se₄@NiFe, NF-Se, IF-Se, and Ir/C/NiFe samples to achieve current density of 10 mA cm⁻² in 1.0 M KOH

Fig. S20 FESEM image of NiSe2/NiFe2Se4@NiFe after OER test

Catalyst	Electrolyte	Substrate	Tafel slope (mV dec ⁻¹)	Potential vs. RHE (V)		
				100	500	1,000
				mA	mA	mA
				cm ⁻²	cm ⁻²	cm ⁻²
NiSe2/NiFe2Se4@NiFe	1.0 M KOH	NF	52.7	1.49	1.53	1.54
(this work)						
NiCoSe ₂ [S6]	1.0 M KOH	NF	97	1.55	-	-
Ni ₃ Se ₂ [S7]	1.0 M KOH	NF	40.2	1.55	-	-
G/NiSe ₂ [S8]	1.0 M KOH	NF	95	1.60	-	-
CoNiSe ₂ [S9]	1.0 M KOH	NF	79	1.54	-	-
Co _{0.13} Ni _{0.87} Se ₂ [S10]	1.0 M KOH	TI	94	1.55	-	-
NiCo ₂ S ₄ [S11]	1.0 M KOH	NF	91	1.62	-	-
NiCo ₂ S ₄ NCAs [S12]	1.0 M KOH	NF	68	1.58	-	-
Co ₉ S ₈ -Ni ₃ S ₂ NAs [S13]	1.0 M KOH	NF	79.3	1.57	-	-
N-Ni ₃ S ₂ [S14]	1.0 M KOH	NF	70	1.57	-	-
Zn-Ni ₃ S ₂ [S15]	1.0 M KOH	NF	87	1.52	-	-
CoSeMoS ₂ /Ni ₃ S ₂ [S16]	1.0 M KOH	NF	46.1	1.53	1.58	-
Fe _{2.1%} -Ni ₃ S ₂ [S17]	1.0 M KOH	NF	33.2	1.50	1.52	-
MoS ₂ -Ni ₃ S ₂ HNRs [S18]	1.0 M KOH	NF	57	1.56	1.65	-
CDs/NiCo ₂ S ₄ /Ni ₃ S ₂ [S19]	1.0 M KOH	NF	99	1.5	1.65	-
NiS [S21]	1.0 M KOH	NF	71	1.59	1.69	-
S-NiO@Ti ₃ C ₂ [S21]	1.0 M KOH	NF	46.8	1.73	-	-

Table S1 OER activities of representative benchmark electrocatalysts in 1.0 M KOH in terms of the potential to achieve 100, 500, and 1,000 mA cm⁻²

Supplementary References

- [S1]S. Niu, W.J. Jiang, Z. Wei, T. Tang, J. Ma, J.S. Hu, L.J. Wan, Se-Doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 141(17), 7005-7013 (2019). https://doi.org/10.1021/jacs.9b01214
- [S2]S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo, J.S. Hu, Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 1902180 (2019). https://doi.org/10.1002/adfm.201902180
- [S3]L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). https://doi.org/s41467-019-13092-7
- [S4]X. Cheng, C. Lei, J. Yang, B. Yang, Z. Li et al., Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5, 3866-3872 (2018). https://doi.org/10.1002/celc.201801104

- [S5]H. Zhou, Y. Wang, R. He, F. Yu, J. Sun, F. Wang, Y. Lan, Z. Ren, S. Chen, One-step synthesis of self-supported porous NiSe₂/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29-36 (2016). https://doi.org/10.1016/j.nanoen.2015.12.008
- [S6]K. Akbar, J.H. Jeon, M. Kim, J. Jeong, Y. Yi, S.-H. Chun, Bifunctional electrodeposited 3D NiCoSe₂/Nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation. ACS Sustainable Chem. Eng. 6, 7735-7742 (2018). https://doi.org/10.1021/acssuschemeng.8b00644
- [S7]A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B 203, 485-493(2017). https://doi.org/10.1016/j.apcatb.2016.10.050
- [S8]J. Yu, Q. Li, C.-Y. Xu, N. Chen, Y. Li, H. Liu, L. Zhen, V.P. Dravid, J. Wu, NiSe₂ pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. J. Mater. Chem. A 5, 3981-3986 (2017). https://doi.org/10.1039/C6TA10303K
- [S9]T. Chen, Y. Tan, Hierarchical CoNiSe₂ nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. **11**, 1331-1344 (2018). https://doi.org/10.1007/s12274-017-1748-3
- [S10] T. Liu, A.M. Asiri, X. Sun, Electrodeposited Co-doped NiSe₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale 8, 3911-3915 (2016). https://doi.org/10.1039/C5NR07170D
- [S11] X. Yin, G. Sun, L. Wang, L. Bai, L. Su, Y. Wang, Q. Du, G. Shao, 3D hierarchical network NiCo₂S₄ nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 42, 25267-25276 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.129
- [S12] Y. Gong, J. Wang, Y. Lin, Z. Yang, H. Pan, Z. Xu, Synthesis of 1D to 3D nanostructured NiCo₂S₄ on nickel foam and their application in oxygen evolution reaction. Appl. Surf. Sci. 476, 600-607 (2019). https://doi.org/10.1016/j.apsusc.2019.01.100
- [S13] Y. Zhou, S. Xi, X. Yang, H. Wu, In situ hydrothermal growth of metallic Co₉S₈-Ni₃S₂ nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Solid State Chem. **270**, 398-406 (2019). https://doi.org/10.1016/j.jssc.2018.12.004
- [S14] P. Chen, T. Zhou, M. Zhang, Y. Tong, C. Zhong et al., 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 29, 1701584 (2017). https://doi.org/10.1002/adma.201701584

- [S15] Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, A Zn-doped Ni₃S₂ nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun. 53, 12446-12449 (2017). https://doi.org/10.1039/C7CC06668F
- [S16] W. Lu, Y. Song, M. Dou, J. Ji, F. Wang, Self-supported Ni₃S₂@MoS₂ core/shell nanorod arrays via decoration with CoS as a highly active and efficient electrocatalyst for hydrogen evolution and oxygen evolution reactions. Int. J.

Hydrogen Energy 43, 8794-8804 (2018).

https://doi.org/10.1016/j.ijhydene.2018.03.110

- [S17] L. Wang, Y. Li, Q. Sun, Q. Qiang, Y. Shen, Y. Ma, Z. Wang, C. Zhao, Ultralow FeIII Ion doping triggered generation of Ni₃S₂ ultrathin nanosheet for enhanced oxygen evolution reaction. ChemCatChem **11**, 2011-2016 (2019). https://doi.org/10.1002/cctc.201801959
- [S18] Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS₂–Ni₃S₂ heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7, 2357-2366 (2017). https://doi.org/10.1021/acscatal.6b03192
- [S19] X. Zhao, H. Liu, Y. Rao, X. Li, J. Wang, G. Xia, M. Wu, Carbon dots decorated hierarchical NiCo₂S₄/Ni₃S₂ composite for efficient water splitting. ACS Sustainable Chem. Eng. 7, 2610-2618 (2019). https://doi.org/10.1021/acssuschemeng.8b05611
- [S20] J.T. Ren, Z.Y. Yuan, Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chem. Eng. 5, 7203-7210 (2017). https://doi.org/10.1021/acssuschemeng.7b01419
- [S21] K.L. Yan, X. Shang, Z. Li, B. Dong, J.Q. Chi et al., Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 42, 17129-17135 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.235