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S1 Synthesis of Ir/C/NiFe and Pt/C/NiFe  

A mixture of 9.0 mg of Ir/C, 810 μL of Nafion (5%), and 90 μL of ethanol was 

ultrasonicated for 30 min, and then oscillated to obtain uniform dispersion. After the 

Ir/C dispersion dropped onto the treated NiFe alloy, the Ir/C/NiFe was gradually dried 

in a fume hood. The loading amount of Ir/C was ~5.0 mg cm-2. The similar procedure 

was used to prepare Pt/C/NiFe. 

S2 Electrochemical Measurements 

Electrochemical activity tests were operated in a traditional three-electrode system at 

room temperature, using a carbon rod and an Ag/AgCl electrode as the counter and 

reference electrodes, respectively. The NiSe2/NiFe2Se4@NiFe was used as the 

working electrode and the electrolyte was 1.0 M KOH solution. During the controlled 
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experiments, the evenly dispersed commercial Pt/C and Ir/C samples were loaded 

onto the surface of clean NiFe alloy as the working electrodes. 

The OER curves were normalized by electrochemical surface area (ECSA) to 

eliminate the influence of the ECSA on the performance comparisons. The 

ECSA-normalized current density for as-prepared samples was calculated as below: 

ECSA-normalized current density = current density × Cs/Cdl 

where Cs is the specific capacitance, and 0.04 mF cm-2 is adopted as the value of Cs 

based on previously reported OER catalysts in alkaline solution [S1].  

Calculation for Faradaic Efficiency: Electrolysis was performed by quantitative gas 

chromatography (GC) under a constant potential (1.55, 1.60, 1.65, 1.70, and 1.75 V) 

running for 20 min in a custom-built H-type cell in which the column Pt electrode is 

placed in one compartment while the Ag/AgCl electrode and NiSe2/NiFe2Se4@NiFe 

electrode are placed in another. The product was subsequently detected by a thermal 

conductivity detector (TCD) in quantitative GC equipment. Atmospheric N2 was used 

as an internal standard. The Faradaic efficiency was calculated by Eq. S1: 

Faradic efficiency % = 4nF/Q     (S1) 

Where F and n are the Faraday constant and the amount of produced O2, respectively; 

Q is the total amount of charge flowed past the electrochemical cell [S2, S3].  

Overall-water-splitting measurements were performed in a two-electrode system 

consisting of NiSe2/NiFe2Se4@NiFe as anode and cathode. The LSV curve for 

overall-water-splitting was recorded at a rate of 5 mV s-1 in 1.0 M KOH. 

The iR compensation was executed based on Eq. S2: 

E = E0 – iR      (S2) 

where E (unit V) is the potential after iR compensation at the current of i (unit A), E0 

(unit V) is the potential from the polarization curve, i is the current at E0 from the 

polarization curve, and R (unit ohm) is the resistance obtained from the EIS result. 

S3 Formation Mechanism  

The specific reaction mechanism of the formation of NiSe2/NiFe2Se4@NiFe 

heterostructure was provided. During the synthesis process, two main oxidation and 

reduction reactions occurred under vacuum condition (Eqs. S3 and S4) as below: 

Ni0 + Se0 → NiSe2 (300 °C)              (S3) 

Ni0 + Se0 + Fe0 → NiFe2Se4 (300 °C)       (S4) 

From Eqs. S3 and S4, the NiSe2 and NiFe2Se4 could be generated by the thermal 

selenization treatment of Ni0 and Fe0 species (e.g. NiFe alloy), which is consistent 

well with the previously reported results [S4, S5].  
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S4 Supplementary Figures 
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Fig. S1 (a) Polarization curves of NiSe2/NiFe2Se4@NiFe, NiFe 40 mg Se-300, and 

NiFe 80 mg Se-300. (b) Polarization curves of NiSe2/NiFe2Se4@NiFe, NiFe-Se-200, 

and NiFe-Se-400 
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Fig. S2 ECSAs of NiFe-Se-200 (a), NiSe2/NiFe2Se4@NiFe (b), and NiFe-Se-400 (c) 
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Fig. S3 Cdl (a) and Nyquist plots (b) of NiFe-Se-200, NiSe2/NiFe2Se4@NiFe, and 

NiFe-Se-400 
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The electrochemical double layer capacitances (Cdl) showed that the Cdl of 33.67 mF 

cm-2 for NiSe2/NiFe2Se4@NiFe was higher than the 21.87 mF cm-2 for NiFe-Se-200 

and 14.94 mF cm-2 for NiFe-Se-400, illustrating that the NiSe2/NiFe2Se4@NiFe 

possessed extraordinary OER activity with more active surface area compared with 

the NiF-Se-200 and NiFe-Se-400. The electrochemical impedance spectroscopy (EIS) 

showed a much smaller charge-transfer resistance for NiSe2/NiFe2Se4@NiFe as 

compared with that of NiFe-Se-200 and NiFe-Se-400, suggesting a fast electron 

transfer ability in NiSe2/NiFe2Se4@NiFe. 

 

Fig. S4 TEM image of NiSe2/NiFe2Se4@NiFe 

 

Fig. S5 (a-b) HRTEM images of NiSe2/NiFe2Se4@NiFe 
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Fig. S6 HRTEM image of NiSe2/NiFe2Se4@NiFe 
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Fig. S7 XRD pattern of NiSe2/NiFe2Se4@NiFe 
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Fig. S8 XPS survey spectrum of NiSe2/NiFe2Se4@NiFe 
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Fig. S9 Faradaic efficiency of NiSe2/NiFe2Se4@NiFe for OER 
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Fig. S10 Multi-step chronopotentiometric curve for 

NiSe2/NiFe2Se4@NiFe
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Fig. S11 ECSAs of (a) NiSe2/NiFe2Se4@NiFe, (b) NF-Se, and (c) IF-Se 
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Fig. S12 Nyquist plots of NiSe2/NiFe2Se4@NiFe, Ni0.7Fe0.3-Se, and Ni0.5Fe0.5-Se 

 

Fig. S13 HRTEM image of NiSe2/NiFe2Se4@NiFe after OER tests 

The characteristic spacing distance of 0.27 nm corresponds to the (210) plane of NiSe2, 

while the characteristic distance of 0.23 nm is corresponded to the (211) plane of 

NiFe2Se4, indicating the existence of NiSe2 and NiFe2Se4 in the NiSe2/NiFe2Se4@NiFe 

after OER tests. Meanwhile, an amorphous oxide layer with a thickness of 1-2 nm 

was observed at the boundary of the NiSe2/NiFe2Se4@NiF after OER tests, supporting 

the conversion of partial NiSe2/NiFe2Se4@NiF into FeOOH and NiOOH species. 
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Fig. S14 Multi-potential steps curve for NiSe2/NiFe2Se4@NiFe 
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Fig. S15 Polarization curves of NiSe2/NiFe2Se4@NiFe in 1.0 M KOH at 25 °C and 

10.0 M KOH at 25 °C 
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Fig. S16 Chronoamperometry curve with the NiSe2/NiFe2Se4@NiFe as electrode at 

500 mA cm-2 without iR compensation. Electrolyte: 1.0 M KOH 
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Fig. S17 Polarization curve of NiSe2/NiFe2Se4@NiFe for HER 
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Fig. S18 The OER performances of NiSe2/NiFe2Se4@NiFe, NF-Se, IF-Se, and 

Ir/C/NiFe samples to achieve current density of 10 mA cm-2 in 1.0 M KOH at 25 °C 
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Fig. S19 Tafel plots of NiSe2/NiFe2Se4@NiFe, NF-Se, IF-Se, and Ir/C/NiFe samples 

to achieve current density of 10 mA cm-2 in 1.0 M KOH 

 

Fig. S20 FESEM image of NiSe2/NiFe2Se4@NiFe after OER test 
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Table S1 OER activities of representative benchmark electrocatalysts in 1.0 M KOH 

in terms of the potential to achieve 100, 500, and 1,000 mA cm-2 

Catalyst Electrolyte Substrate 

Tafel 

slope 

(mV dec-1) 

Potential vs. RHE (V) 

100 

mA 

cm-2 

500 

mA 

cm-2 

1,000 

mA 

cm-2 

NiSe2/NiFe2Se4@NiFe 

(this work) 
1.0 M KOH NF 52.7 1.49 1.53 1.54 

NiCoSe2 [S6]  1.0 M KOH NF 97 1.55 - - 

Ni3Se2 [S7]  1.0 M KOH NF 40.2 1.55 - - 

G/NiSe2
 [S8] 1.0 M KOH NF 95 1.60 - - 

CoNiSe2 [S9] 1.0 M KOH NF 79 1.54 - - 

Co0.13Ni0.87Se2 [S10]  1.0 M KOH TI 94 1.55 - - 

NiCo2S4 [S11]  1.0 M KOH NF 91 1.62 - - 

NiCo2S4 NCAs [S12]  1.0 M KOH NF 68 1.58 - - 

Co9S8-Ni3S2 NAs [S13]  1.0 M KOH NF 79.3 1.57 - - 

N-Ni3S2 [S14]  1.0 M KOH NF 70 1.57 - - 

Zn-Ni3S2 [S15]  1.0 M KOH NF 87 1.52 - - 

CoSeMoS2/Ni3S2 [S16]  1.0 M KOH NF 46.1 1.53 1.58 - 

Fe2.1%-Ni3S2 [S17]  1.0 M KOH NF 33.2 1.50 1.52 - 

MoS2-Ni3S2 HNRs [S18] 1.0 M KOH NF 57 1.56 1.65 - 

CDs/NiCo2S4/Ni3S2 [S19]  1.0 M KOH NF 99 1.5 1.65 - 

NiS [S21]  1.0 M KOH NF 71 1.59 1.69 - 

S-NiO@Ti3C2 [S21]  1.0 M KOH NF 46.8 1.73 - - 
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