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HIGHLIGHTS

• Recent advances in biomedical applications of metal–organic framework (MOF) nanocarriers for drug delivery are summarized.

• State-of-the-art strategies to functionalize MOFs with therapeutic agents, as well as their merits and drawbacks, are comprehensively 
discussed.

ABSTRACT Investigation of metal–organic frameworks (MOFs) for bio-
medical applications has attracted much attention in recent years. MOFs 
are regarded as a promising class of nanocarriers for drug delivery owing 
to well-defined structure, ultrahigh surface area and porosity, tunable pore 
size, and easy chemical functionalization. In this review, the unique prop-
erties of MOFs and their advantages as nanocarriers for drug delivery in 
biomedical applications were discussed in the first section. Then, state-of-
the-art strategies to functionalize MOFs with therapeutic agents were sum-
marized, including surface adsorption, pore encapsulation, covalent binding, 
and functional molecules as building blocks. In the third section, the most 
recent biological applications of MOFs for intracellular delivery of drugs, 
proteins, and nucleic acids, especially aptamers, were presented. Finally, 
challenges and prospects were comprehensively discussed to provide context 
for future development of MOFs as efficient drug delivery systems.
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1 Introduction

Metal–organic frameworks (MOFs) represent a promising 
class of highly ordered crystalline porous coordination poly-
mers (PCPs) [1–3]. The extended infinite one-/two-/three-
dimensional networks of MOFs are formed by the linkage 
of inorganic metal (e.g., transition metal and lanthanide 
metal) ions/clusters as the node and organic ligands (e.g., 
carboxylates, phosphonates, imidazolates, and phenolates) 
as the strut. In 1995, the Yaghi group studied selective bind-
ing and removal of guest molecules in a microporous MOF 
composed of 1,3,5-benzenetricarboxylate (BTC) and cobalt 
cation [4]. In 1999, the same group reported the design and 
synthesis of MOF-5, which contains 1,4-benzenedicarboxy-
late (BDC) and  Zn4O clusters [5]. MOF-5 showed exception-
ally high Langmuir surface area of 2900 m2 g−1. Over the 
past two decades, owing to extremely high surface area and 
pore volume, as well as tunable pore size and chemical com-
position, MOFs have been studied for various applications, 
including, for example, gas storage and separation [6–9], 
chemical separation [10, 11], catalysis [12–15], sensing 
[16–19], semiconductors [20], and bioimaging [21, 22].

In recent years, biomedical applications of MOFs for 
drug delivery have attracted increasing attention. When the 
size of MOF particles was scaled down to nanoscale, these 
nano-MOFs (NMOFs) can act as efficient nanocarriers to 
deliver agents for imaging, chemotherapy, photothermal 
therapy, or photodynamic therapy [23–27]. So far, various 
nanoparticle-based systems have been studied for drug deliv-
ery, such as liposomes, micelles, dendrimers, microbubbles, 
and solid particles [28]. The properties of MOF nanoparti-
cles, dendrimers, and mesoporous silica nanoparticles are 

summarized in Table 1. Compared to other porous materials, 
MOFs show several outstanding advantages, such as (1) high 
surface area and porosity for high loading of therapeutic 
agents and (2) facile modification of physical (e.g., pore size 
and shape) and chemical properties of MOFs through inor-
ganic clusters and/or organic ligands. For example, some 
MOFs containing lanthanide metals emit fluorescence 
under ultraviolet irradiation [17, 29]. In addition, desired 
functional groups can be added onto the organic ligands by 
predesigning of the ligands or post-synthetic modification 
approaches [30–32]. Other merits of MOFs include (3) dif-
fusion of substrates to interact with the incorporated mol-
ecules via the MOF’s open windows and pores; (4) moderate 
strength of coordination bonds, making MOFs biodegrada-
ble, and (5) well-defined structures beneficial for host–guest 
interaction studies [33]. With these unique properties, MOFs 
have been considered as one of the best candidates for drug 
delivery and cancer therapy.

So far, a series of molecules have been selected as thera-
peutic agents to investigate MOFs for drug delivery applica-
tions. For instance, anticancer drugs including doxorubicin 
[34–37], cisplatin [38], topotecan [39], camptothecin [40], 
and 5-fluorouracil [41] have been incorporated into MOFs 
for intracellular delivery and cancer treatment. Some near-
infrared region (NIR) organic dyes were used for photother-
mal therapy [42, 43]. MOFs functionalized with photosensi-
tizers for photodynamic therapy (PDT) were also developed 
[44, 45]. In addition, delivery of many biomolecules by 
MOF nanocarriers have been studied in recent years [46]. 
Biomolecules exist in organisms and are critical to biologi-
cal processes. They include macromolecules, e.g., nucleic 
acids, proteins, lipids, carbohydrates, and small molecules, 

Table 1  Summary of the properties of MOF nanoparticles, dendrimers, and mesoporous silica nanoparticles

MOFs Dendrimers Mesoporous silica Refs

Synthesis Solvothermal, microwave, ultrasound LBL process Sol–gel process, hydrothermal [163, 164] [165]
Morphology Spherical, ellipsoidal, cubic, hexagonal, 

octahedral, etc.
Spherical Spherical, cylindrical [164–166]

Size distribution Mono-/poly-disperse Monodisperse Mono-/poly-disperse [167–169]
Pore shape Highly tunable Open internal cavity Hexagonal, cubic [166, 168, 170]
Pore feature Amphiphilic Hydrophobic Hydrophobic [33, 171, 172]
Structural tunability Highly tunable through inorganic clusters 

and organic ligands
Depends on generation 

number and building 
blocks

Depends on synthetic conditions [173–175]

Structural flexibility Highly flexible Depends on generation Rigid [164, 176, 177]
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e.g., amino acids and fatty acids. Delivery of these mol-
ecules with essential biological functions as biomolecular 
drugs provides a novel route for disease treatment.

In this review, we present the most recent progress of 
MOFs as promising nanocarriers for drug delivery in bio-
medical applications. First, we summarize state-of-the-art 
strategies to functionalize MOFs with therapeutic agents, 
including surface adsorption, pore encapsulation, covalent 
binding, and functional molecules as the building block. 
Then, we discuss recent biomedical applications of MOF 
nanocarriers for intracellular delivery of drugs, nucleic acids, 
and proteins. Finally, challenges and prospects are summa-
rized in anticipation that this review can provide guidance 
for future researchers to engineer and explore MOFs as novel 
drug delivery systems for biological applications.

2  Functionalization for Drug Delivery

MOFs exhibit unique properties, e.g., highly ordered struc-
ture, high surface area, and large pore volume, that enable 
them to adsorb functional molecules on their external 
surface or open channels, as well as trap these molecules 
inside the framework. In addition, functional molecules 
can be incorporated into MOFs through covalent bonds by 
one-pot synthesis or post-synthetic modification. In this 
part, we focus on four advanced strategies to functional-
ize MOFs with therapeutic agents for biological applica-
tions. They include surface adsorption, pore encapsulation, 
covalent binding, and functional molecules as the building 
block. Assessments of the merits and drawbacks of these 
approaches are also highlighted.

2.1  Surface Adsorption

Due to high surface area and porosity, functional molecules 
can be adsorbed on the surface of MOFs. Generally, surface 
adsorption is achieved by stirring the pre-synthesized MOFs in 
a solution of functional molecules. Van der Waals interaction, 
π–π interaction, and hydrogen bonding are the dominant forces 
involved in this method. There is no strict requirement on the 
pore size or type of functional groups of MOFs for applica-
tion of this relatively straightforward strategy. However, the 
leaching problem can hardly be avoided based on the weak 
interaction forces between molecules and MOF framework.

Surface adsorption has been widely applied for enzyme 
immobilization [47]. In 2006, the Balkus group reported 
physical adsorption of microperoxidase-11(MP-11) catalyst 
on a nano-crystalline Cu-based MOF while maintaining the 
catalytic activity of MP-11 [48]. Compared to five mesoporous 
benzene silica (MBS) host materials, MP-11 supported on Cu-
MOF showed better catalytic activity. Similarly, Liu et al. syn-
thesized enzyme–MOF bioreactors for catalysis using MOFs 
with no chemical modification on the surface. Studies showed 
that host–guest interactions are mainly facilitated by hydrogen 
bonding and π–π interaction [49, 50]. Ma et al. investigated 
zeolitic imidazolate frameworks (ZIFs) as the matrix to co-
immobilize methylene green (MG) and glucose dehydrogenase 
(GDH) to fabricate an integrated electrochemical biosensor 
(Fig. 1a) [51]. Among a series of ZIFs with different pore 
sizes, surface areas, and functional groups, ZIF-70 exhibited 
the best adsorption capacity for MG and GDH.

In addition to enzymes, nucleic acids can be immobilized 
on MOFs through surface adsorption [52]. For example, the 
Zhou and Deng group designed four isoreticular MOFs (Ni-
IRMOF-74-II to -V) with tuned open channel size increased 
from 2.2 to 4.2 nm to precisely include single-stranded DNA 
(ssDNA, 11–53 nt) (Fig. 1b, c) [53]. The MOF framework 
acted as an excellent host to protect ssDNA from degrada-
tion by confining the nucleic acid chain completely inside the 
channel. Studies suggested that van der Waals interactions pro-
vided by suitable channel size and moderate accommodation 
in Ni-IRMOF-74-II are responsible for the reversible uptake 
and release of ssDNA. Subsequently, the Ni-IRMOF-74 series 
were applied as nonviral vectors for intracellular delivery and 
gene silencing. Two MOFs (Ni-IRMOF-74-II and -III) with 
weaker interactions exhibited optimal transfection efficiency 
in mammalian immune cells, 92% in primary mouse immune 
cells  (CD4+ T cell) and 30% in human immune cells (THP-1 
cell), over commercial agents (Lipo and Neofect).

2.2  Pore Encapsulation

Since MOFs possess high porosity and pores tunable from 
microporous to mesoporous, many types of functional mol-
ecules can be accommodated inside the pores. As a host 
material, MOFs prevent the loaded substrates from leaching, 
as well as providing them a protective environment against 
external adverse factors.
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Fig. 1  a Schematic illustration of fabricating an integrated electrochemical biosensor for glucose using ZIF-70 as the matrix to co-immobilize 
MG and GDH onto the surface of electrode. Reproduced with permission from Ref. [51]. Copyright 2013, American Chemical Society. b Sche-
matic illustration of ssDNA immobilization in Ni-IRMOF-74 series with precisely controlled channel size. Ni, C, and O atoms were labeled with 
green, gold, and red color, respectively. c Gradual increase in the interaction between ssDNA and MOFs with the increase in MOF channel size. 
Relatively weak interactions ensured the uptake, protection, and reversible release of ssDNA. Reproduced with permission from Ref. [53]. Copy-
right 2018, Nature Publishing Group
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A versatile and efficient way to incorporate functional 
molecules into MOFs is pore encapsulation through de 
novo synthesis. During the synthetic process, MOF forma-
tion and substrate encapsulation occur at the same time. As 
a result, this method enables immobilization of larger mol-
ecules, compared to the pore size of MOFs, into the cavity 
of MOFs. However, it requires that the substrate is stable 
under synthetic conditions.

So far, this method has been widely used to encapsulate 
anticancer drugs inside the MOF host for intracellular deliv-
ery and subsequent release [54]. For instance, monodisperse 
ZIF-8 nanospheres of uniform particle size (70 nm) were 
synthesized with the anticancer drug camptothecin encapsu-
lated inside the framework [40]. Enhanced cell internaliza-
tion and reduced cytotoxicity were demonstrated by studies 
on the MCF-7 breast cancer cell line. By mixing inorganic 
metal salts, organic ligands, and drug molecules, the anti-
cancer drug 3-methyladenine was successfully incorporated 
into ZIF-8 [55]. An increased efficiency of autophagy inhi-
bition was observed in HeLa cells treated with 3-methylad-
enine@ZIF-8 nanoparticles. ZIF-8 has been considered as 
an ideal host material for intracellular drug delivery owing to 
good monodispersity, optimal size for cellular uptake, ease 
of synthesis under mild environment, and ease of surface 
modification.

In addition to anticancer drugs, enzyme encapsulation by 
de novo synthesis has been accomplished. Wu et al. reported 
a one-step and facile synthesis of ZIF-8 nanocrystals con-
taining glucose oxidase (GOx) and horseradish peroxidase 
(HRP) in aqueous solution at 25 °C (Fig. 2a) [56]. The pre-
pared GOx&HRP@ZIF-8 bioconjugates exhibited high sta-
bility, selectivity, and catalytic efficiency. Hou et al. encap-
sulated GOx into magnetic ZIF-8 to construct a reusable 
mimic multi-enzyme system [57].

In general, synthetic conditions, e.g., high temperature, 
organic solvents, and acidic environment, of MOFs are too 
harsh for biomolecules, such as enzymes, to maintain their 
structural features and activities. To address this issue, pore 
encapsulation by a post-synthetic modification strategy pro-
vided a powerful route to incorporate biomolecules under 
mild conditions. In 2011, the Ma group reported immobi-
lization of microperoxidase-11 (MP-11) into a mesoporous 
MOF, denoted as Tb-mesoMOF [58]. By immersing freshly 
synthesized Tb-mesoMOF crystals in MP-11 solution, the 
enzyme with dimensions of about 3.3 × 1.7 × 1.1 nm3 was 
successfully loaded into MOFs containing cages of 3.9 and 

4.7 nm in diameter. MP-11@Tb-mesoMOF exhibited higher 
catalytic activity compared to mesoporous silica material 
(MCM-41). Later, the group found that cytochrome c (Cyt 
c) with dimensions of 2.6 × 3.2 × 3.3 nm3 could be trapped 
by a MOF with smaller window sizes (1.3 and 1.7 nm) 
[59]. Mechanistic studies suggested that the enzyme was 
flexible and could change its conformation significantly to 
pass through small nanopores to enter the MOF’s interior 
(Fig. 2b). Similarly, the Zhou group prepared stable PCN-
333 containing large mesoporous cages as single-molecule 
traps (SMTs) for enzyme encapsulation, which prevented 
enzymes from aggregation and leaching [60]. Three different 
enzymes were successfully encapsulated into PCN-333(Al) 
with record-high loading and recyclability.

2.3  Covalent Binding

Although various functional molecules have been incorpo-
rated into MOFs by surface adsorption and pore encapsu-
lation methods, relatively weak interaction forces between 
these molecules and MOFs often result in slow leaching 
problems. Considering this, immobilization through cova-
lent binding provides a feasible solution.

In general, the MOF surface possesses many kinds of 
functional groups, such as amino, carboxyl, and hydroxyl 
group, that can be utilized to form covalent bonds with the 
reactive groups on the target [61]. For instance, Jung et al. 
reported conjugation of enhanced green fluorescent protein 
(eGFP) and Candida antarctica lipase B (CAL-B) enzyme 
on the MOF surface through post-synthetic modifications 
[62]. A coupling reagent, such as 1-ethyl-3-(3-dimethylami-
nopropyl) carbodiimide (EDC) or dicyclohexyl carbodiimide 
(DCC), was used to activate the dangling carboxylate groups 
of organic ligands on the MOF surface for subsequent bio-
conjugation (Fig. 3a). Studies showed that enantioselectiv-
ity and activity in transesterification of ( ±)-1-phenylethanol 
were well preserved for CAL-B-MOF bioconjugates. With 
a similar coupling method, the protease enzyme trypsin 
was successfully immobilized onto MIL-88B(Cr), MIL-
88B-NH2(Cr), and MIL-101(Cr) [63]. This was achieved 
by nucleophilic attack of the amine groups of trypsin on 
DCC-activated MOFs (Fig. 3b). Trypsin-MIL-88B-NH2(Cr) 
exhibited bovine serum albumin (BSA) protein digestion 
efficiency comparable to that of native trypsin digestion. 
In addition to the carboxylate group, the amino group on 
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organic ligands can be used to coordinate with enzymes, 
such as glucose oxidase [64] and soybean epoxide hydrolase 
[65].

Click reaction on the organic linkers has been utilized for 
immobilization of biomolecules [66, 67]. The Mirkin group 
reported the first examples of nucleic acid–MOF nanopar-
ticle conjugates [68]. They were synthesized by a strain 
promoted click reaction between azide-functionalized UiO-
66 and dibenzylcyclooctyne-functionalized DNA (Fig. 3c). 
Since the pore size of UiO-66 is small, the DNA strands 
were coordinated to the external surface of MOF nanoparti-
cles. The UiO-66 structure could be maintained during the 
chemical reaction. Compared to nonfunctionalized MOF 
nanoparticles, the DNA–MOF conjugates exhibited higher 
colloidal stability and enhanced cellular uptake.

In addition to organic linkers, inorganic metal clusters 
provide another type of reactive sites in MOFs to cova-
lently bind functional molecules. In 2017, the Mirkin group 
reported a general and direct approach to functionalize the 
external surface of MOF nanoparticles with oligonucleo-
tides [69]. Through this coordination chemistry-based strat-
egy, the external metal nodes of MOF nanoparticles were 
covalently linked with terminal phosphate-modified oligo-
nucleotides. Nine different archetypical MOFs containing 
different metals (Zr, Cr, Fe, and Al) were all successfully 
modified with oligonucleotides on the external surface. 
This method allows functionalization of the particle surface 
independent of MOF structure. In addition, DNA is chemi-
cally programmable to manipulate interparticle interactions. 
The prepared nucleic acid-nanoparticle conjugates could be 

used for DNA mediated programmable assembly and intra-
cellular process manipulation. The Zhou group reported a 
facile one-pot approach to incorporate a series of porphyrin 
derivatives into stable Zr-MOFs, taking advantage of the 
available coordination sites on  Zr6 clusters [70]. By mixing 
ligands of different geometries and connectivities, tunable 
amounts of tetratopic tetrakis(4-carboxyphenyl)porphyrin 
(TCPP) ligands were successfully integrated, while, at the 
same time, maintaining the crystal structure, morphology, 
and ultrahigh chemical stability of the parent MOF. This 
strategy provided a facile route toward multifunctional stable 
Zr-MOFs for potential applications.

2.4  Functional Molecules as the Building Block

Another approach to functionalize MOFs is designing 
functional molecules as the building block. Biomolecules 
generally contain several reactive chemical groups that can 
coordinate with inorganic metals. So far, amino acids [71], 
peptides [72, 73], nucleobases [74], and saccharides [75] 
have been applied as the organic ligands to synthesize bio-
MOFs. Bio-MOFs tend to have better biocompatibility and 
special biological functionality. However, most biomol-
ecules are highly flexible with low symmetry, making it a 
challenge to use them directly to form high-quality MOF 
crystals.

For nucleobases, several oxygen and nitrogen atoms in 
the structure are accessible as lone pair electron donors to 
coordinate with metal ions. Among nucleobases, adenine has 

N
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Fig. 2  a One-step synthesis of ZIF-8 nanocrystals embedding multiple enzymes GOx and HRP. Reproduced with permission from Ref. [56]. 
Copyright 2015, The Royal Society of Chemistry. b Mechanism of Cyt c translocation into the MOF interior through relatively small windows. 
Reproduced with permission from Ref. [59]. Copyright 2012, American Chemical Society
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been widely studied to build bio-MOFs owing to rich binding 
modes provided by four N atoms in the purine ring and one 
exocyclic amino group [76]. In order to form a highly ordered 
MOF structure with low-symmetry adenine as the building 
block, a symmetrical co-ligand was introduced to guide the 
synthesis. By mixing biphenyldicarboxylic acid (BPDC), 
adenine, and zinc acetate dihydrate, the Rosi group synthe-
sized crystalline and porous bio-MOF-1 with the follow-
ing formula:  Zn8(ad)4(BPDC)6O·2Me2NH2·8DMF·11H2O 
[77]. The MOF consists of infinite 1D zinc-adeninate 
columns comprising corner-fused zinc-adeninate octa-
hedral building units (ZABUs), which are interconnected 
by linear BPDC linkers (Fig. 3d). Later, the same group 
reported a mesoporous MOF named as bio-MOF-100 
 (Zn8(ad)4(BPDC)6O2·4Me2NH2·49DMF·31H2O) with higher 
surface area (4300 m2 g−1) and pore volume (4.3 cm3 g−1) 
[78]. The MOF consists of discrete ZABUs interconnected 
with BPDC linkers. Each ZABU is connected to four 

neighboring ZABUs via 12 BPDC linkers to generate a 
three-dimensional structure with large cavities and channels. 
The Zhou group added a highly symmetrical co-ligand to 
obtain  Zn3[Zn2(μ2-H2O)]3(Ad)6(TATB)4(DMF), (Ad = aden-
inate, TATB = 4,4′,4′’-s-triazine-2,4,6-triyl-tribenzoate) 
(PCN-530) [79].

3  Applications in Drug Delivery

One of the major problems for conventional chemotherapy 
is the need to use a high drug dose as a consequence of 
poor biodistribution, resulting in frequent dose-related 
side effects [80]. This calls for the exploration of novel 
and efficient drug delivery systems (DDSs). Recent stud-
ies have shown the application of MOF nanocarriers to 
achieve targeted drug delivery, increased cellular uptake, 
and controlled drug release, making MOFs a promising 
class of DDSs for drug delivery, including anticancer 
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drugs, antimicrobial agents, metabolic labeling molecules, 
antiglaucoma medication, and hormone [42, 54, 81–84]. 
So far, targeted delivery has been achieved by three strat-
egies, including passive delivery owing to enhanced 
permeability and retention (EPR) phenomenon, active/
ligand delivery (e.g., folic acid, antibody, and hyaluronic 
acid), and triggered delivery (e.g., pH, photoirradiation, 
temperature, and pressure). Pinocytosis includes clathrin-
mediated endocytosis, caveolin-mediated endocytosis, 
as well as clathrin- and caveolin-independent endocyto-
sis [85, 86]. During the clathrin-mediated endocytosis, 
receptors are responsible for cargo recognition, followed 
by the formation of clathrin-coated vesicles, which are 
usually up to 200 nm in size [87]. These vesicles merge 
with early endosomes, then mature into late endosomes. 
The late endosomes fuse with lysosomes, which leads to 
the hydrolysis of the DDS and the cargo, consequently 
diminishing its therapeutic effect [88]. On the other hand, 
caveolin-mediated endocytosis involves the formation of 
lipid raft-enriched flask-shaped invaginations coated with 
caveolin [89, 90]. Nanoparticles internalized through 
caveolin-mediated endocytosis can be delivered later to 
different locations inside the cell. Premature drug release 
is a major drawback for many MOF-based DDS. Recent 
studies have shown that several strategies such as encap-
sulation of drugs into MOFs by a one-pot synthesis, sur-
face coating of MOFs, and triggered drug release could 
be applied to overcome this problem. In this section, we 
mainly focus on recent progress in biomedical applica-
tions of MOFs for the delivery of drugs, nucleic acids, 
and proteins.

3.1  Drugs

Because of their extremely large surface area, highly 
porous structure, and easy chemical modification, MOFs 
have been extensively studied as ideal nanocarriers to load 
various drugs. For example, doxorubicin hydrochloride 
(DOX) represents one of the first-line chemotherapeutic 
drugs for breast cancer, ovarian cancer, and lymphoblas-
tic leukemia [91]. Busulfan (Bu) is an amphiphilic anti-
tumor drug widely used in chemotherapy for leukemia as 
an alternative to total-body irradiation [92]. Topotecan 
(TPT) is a derivative of the drug camptothecin (CPT) 

that is clinically used for treatment of refractory ovarian 
[93] and small cell lung cancers [94]. In general, drugs 
are loaded into MOFs by in situ encapsulation or a post-
synthetic modification strategy. The former is a relatively 
straightforward method suitable for thermostable drugs to 
overcome premature drug release. Although more com-
plicated and time-consuming, the latter provides a milder 
environment to avoid destroying drug molecules. With the 
development of MOF chemistry, a series of MOFs have 
been explored as promising candidates for application in 
this area [95]. We selected some MOFs as examples (e.g., 
ZIF-8, MIL-100 and MIL-101) in this part to summarize 
recent progress of MOFs as a novel class of nanocarrier 
for drug delivery. The information of these MOFs (e.g., 
surface area and pore volume), the agents delivered, and 
the cells/animals used to test the DDS were summarized 
in the table (Table 2). Strategies to enhance therapeutic 
efficiency by, for example, increasing the drug loading, 
facilitating the cellular uptake and controlling the drug 
release are also discussed.

Zeolite imidazolate frameworks (ZIFs) are a subclass of 
MOFs that have been applied in gas separation [96], chemi-
cal separation [97], and as carriers for metal nanoparticles 
[98] and drugs [99]. ZIF-8 contains zinc ions and 2-meth-
ylimidazolate. Based on its high thermal and hydrothermal 
stability, as well as nontoxic and biocompatible characteris-
tics, ZIF-8 has been regarded as a promising nanocarrier for 
drug delivery [100]. It is worth noting that ZIF-8 is stable 
under physiological conditions but unstable under acidic 
environments, making it feasible to use in a pH-responsive 
drug delivery system.

In 2012, the Junior group successfully loaded ZIF-8 with 
DOX (4.9 wt%) by post-synthetically stirring dehydrated 
ZIF-8 powder with the drug in aqueous solution [101]. 
Highly controlled and gradual drug release was observed 
(66% drug release after 30 days). Similarly, ZIF-8 was used 
for 5-fluorouracil (5-FU) delivery as a pH-responsive drug 
delivery vehicle [102]. A remarkable capacity of the drug 
was achieved through post-synthetic modification of ZIF-8 
with 5-FU, with around 660 mg of 5-FU/g of ZIF-8. Experi-
ments suggested a faster drug release in a mild acidic buffer 
solution (pH = 5.0) compared to that in neutral condition 
(pH = 7.4). Later, the Su group reported fabrication of ZIF-8 
with polyacrylic acid (PAA) to reach an ultrahigh DOX 
loading capability (1.9 g DOX/g MOF) using a facile and 
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simple route (Fig. 4a) [34]. As a pH-dependent drug deliv-
ery vehicle, PAA@ZIF-8 released drugs faster under acidic 
conditions (pH = 5.5) (Fig. 4b). The standard 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell 
assay was performed on MCF-7 cells to characterize the 
cytotoxicity. Results showed that the cytotoxic efficacy of 
the DOX-loaded PAA@ZIF-8 nanoparticles was similar to 
that of the free DOX and enhanced by increased DOX con-
centration (Fig. 4c). The confocal laser scanning microscopy 
(CLSM) analyses suggested that increased amounts of DOX 
were delivered to the nucleus from 3 to 24 h (Fig. 4d).

Compared to the post-synthetic modification method, the 
in-situ encapsulation approach avoids impeding the access 
of large molecules by small pore opening of MOFs and 
alleviates the problem of premature drug release. Tsung 
et al. developed a general synthetic strategy toward in situ 
incorporation of drug molecules (e.g., camptothecin) into 

the framework of ZIF-8 nanospheres for drug delivery [40]. 
Through their method, zinc nitrate, 2-methyl imidazole and 
drug molecules were mixed to generate uniform ZIF-8 nano-
particles (70 nm) with single-crystalline structure. The size 
of nanoparticles was optimized to facilitate cellular uptake. 
Enhanced MCF-7 cell death by camptothecin-encapsulated 
ZIF-8 nanoparticles was observed, indicating internalization 
and intracellular release of the drug. Using a similar strat-
egy, an autophagy inhibitor, 3-methyladenine (3-MA), was 
encapsulated into ZIF-8 nanoparticles with a high loading 
(19.8 wt%) (Fig. 5a) [55]. TEM studies suggested that the 
cellular uptake of 3-MA@ZIF-8 into HeLa cells is facili-
tated through the nanoparticle internalization. The ZIF-8 
nanoparticles were localized mainly in the cytoplasm and 
subcellular organelles. And the cells treated with 3-MA@
ZIF-8 showed more autophagosomes than that of 3-MA. The 
xenograft tumor of cervical cancer HeLa cell was established 

Table 2  Summary of the MOF type, surface area, pore size, agents delivered, and cells/animals tested for drug delivery discussed in this review

MOF BET surface area 
 (m2  g−1)

Pore size (Å) Agents delivered Cells/animals tested Refs

ZIF-8 1300 12 DOX MCF-7 cells [34]
DOX MDA-MB-468 cells [103]
DOX B16F10 bearing mice [106]
Camptothecin MCF-7 cells [40]
3-MA HeLa cells [55]
Ceftazidime Escherichia coli [83]
pEGFP-C1 MCF-7 cells [127]
VEGF aptamer/insulin/GOx MCF-10A cells [149]
DOX/BSA MCF-7 cells [152]

MIL-100 1800 25 and 29 ICG MCF-7 cells [42]

D-AzAla MRSA-bearing mice [81]
Brimonidine tartrate 661 W cells [84]
DOX HepG-2 cells [36]
Topotecan PANC1 cells [39]

MIL-101 2200 29 and 34 Cisplatin HT-29 cells [112]
DOX H22 tumor-bearing mice [113]
siRNAs MCF-7/T cells [130]

NU-1000 2200 12 and 30 Insulin N.A [82]
Insulin/DNA SK-OV cells [151]

UiO-66 1200 8 and 12 Tamra-labeled DNA HeLa cells [68]
AS1411/DOX MCF-7 cells [147]

UiO-67 2300 12 and 16 Brimonidine tartrate 661 W cells [84]
UiO-68 4000 16 and 20 Cisplatin/siRNAs SKOV-3 cells [129]

ATP/AS1411 MDA-MB-231 [148]
PCN-333 4000 42 and 55 Tyrosinase RPMI-1640 [158]
ZIF-90 1300 11 Cas9 HeLa cells [153]
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to evaluate the antitumor effect of the nanoparticles. Next, 
the autophagic regulation proteins were estimated by immu-
nohistochemistry. Compared with free 3-MA, 3-MA@
ZIF-8 showed upregulating of p62 and downregulating of 
the autophagy-related markers, Beclin 1 and LC3 (Fig. 5b).

Unlike adding all the reactants at the same time, Zou and 
coworkers reported a novel pH-induced one-pot synthe-
sis of DOX@ZIF-8 [103]. First, inorganic metal ions and 
drugs were self-assembled to form coordination polymers at 
pH = 8. Then, the organic linkers were added to disassemble 
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metal ions from the drugs. As a result, drug molecules were 
encapsulated during MOF formation, generating hierarchical 
ZIF-8 (Fig. 6a). Confocal microscopy was used to compare 
the uptake of free DOX and DOX@ZIF-8 into the MDA-
MB-468 cells (Fig. 6b). Results showed that free DOX 
entered the nuclei very fast (within 2 h) and accumulated 
in the nuclei. While DOX@ZIF-8 nanoparticles were ini-
tially observed in the cytoplasm. After 24 h, most of the 
cells treated with DOX@ZIF-8 were dead, and only cellu-
lar debris was observed. Compared with free DOX, DOX@
ZIF-8 showed pH-responsive drug release and increased 
efficacy on breast cancer cell lines.

Multidrug resistance (MDR) has been reported as one 
major cause for the failure of cancer chemotherapy. The 

main reason for MDR is overexpression of active efflux 
transporters, e.g., P-glycoprotein [104, 105]. To address 
this issue, the Luan group reported the use of ZIF-8 as a co-
delivery system for efficient targeted cancer therapy [106]. 
Generally, MOF nanoparticles accumulate preferentially in 
the neoplastic tissues through passive targeting owing to the 
EPR effect [107, 108]. The EPR effect is based on the size 
range of the MOF nanoparticles (12.5 to 150 nm) and two 
fundamental characteristics of the neoplastic tissues (the 
leaky vasculature and impaired lymphatic drainage). In this 
study, verapamil hydrochloride (VER) was selected as the 
P-glycoprotein inhibitor to overcome MDR, while DOX 
was selected as an anticancer drug. Through a facile one-
pot process, VER and DOX were encapsulated into ZIF-8 to 
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Fig. 5  a Encapsulation of autophagy inhibitor 3-MA into ZIF-8 nanoparticles. b Autophagic regulation proteins of xenograft tumor estimated 
by immunohistochemistry (scale bar: 200 μm). Reproduced with permission from Ref. [55]. Copyright 2017, American Chemical Society
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form uniform nanoparticles with high stability. Furthermore, 
ZIF-8 was stabilized by methoxy poly(ethylene glycol)-
folate (PEG-FA) to realize prolonged circulation and active 
targeted drug delivery (Fig. 7a). According to the cell uptake 
and near-infrared fluorescence (NIRF) imaging results, 
drug accumulation in tumors was increased by PEG-FA/
(DOX + VER)@ZIF-8. Studies revealed that both FR-medi-
ated endocytosis and VER-mediated multidrug resistance 
reversal improved the internalization of DOX and enhanced 
its cytotoxicity for efficient anticancer effect. To study the 
targeted behaviors of PEG-FA/ZIF-8 in vivo, the mice bear-
ing tumors derived from B16F10 cells were selected and 
monitored by NIRF optical imaging system (Fig. 7b). The 
mice injected with PEG-FA/IR820@ZIF-8 exhibited higher 

intensity of fluorescence at the tumor sites than that injected 
with free IR820. In addition to folic acid, other molecules 
have been studied for active delivery. For example, Cai et al. 
modified MOF nanoparticles with hyaluronic acid (HA) and 
indocyanine green (ICG) for imaging-guided, anticancer 
photothermal therapy (PTT) [42]. The in vitro and in vivo 
imaging showed that the MOF@HA@ICG exhibited greater 
cellular uptake in CD44-positive MCF-7 cells and enhanced 
tumor accumulation in xenograft tumors. Qi et al. devel-
oped a MOF-based platform modified with antiepithelial cell 
adhesion molecule (anti-EpCAM) antibody to achieve cell 
recognition and targeted capture [109]. The platform acted 
as an efficient trapper for targeted tumor cells (MCF-7 cells), 
exhibiting excellent capture capability and selectivity.
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Fig. 6  a pH-induced one-pot synthesis of hierarchical ZIF-8 with encapsulated drug molecules. b Cell uptake studies conducted to compare the 
localizations of DOX@ZIF-8 and free DOX in the MDA-MB-468 cells. Reproduced with permission from Ref. [103]. Copyright 2015, Ameri-
can Chemical Society
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MIL-101 is a zeotypic MOF built from trimers of metal 
octahedra and 1,4-benzenedicarboxylic acid (BDC) [110]. 
As an example of nontoxic porous iron(III)-based MOFs, 
MIL-101(Fe) has been selected for anticancer drug deliv-
ery studies owing to its biocompatible, biodegradable, 
and highly water-stable characteristics. Moreover, this 
mesoporous MOF possesses pores of 29 Å and 34 Å, hold-
ing great promise for high loading and sustained release of 
drugs [111]. For instance, ethoxysuccinato-cisplatin anti-
cancer prodrug was post-synthetically loaded into MIL-
101-NH2(Fe) [112]. Controlled cargo release was realized 
by surface coating with silica shell. Recently, Zhang et al. 

reported a one-pot and organic solvent-free "green" post-
synthetic modification method to construct a dual-respon-
sive, tumor targeting drug delivery system based on MIL-
101(Fe) [113]. After incorporation of DOX, the surface of 
MOF was modified with a bicyclononyne (BCN)-function-
alized β-cyclodextrin (β-CD) derivative (β-CD-SS-BCN) 
by copper-free click chemistry. Then, further modifica-
tion with an αvβ3 integrin-targeting peptide-functionalized 
polymer Lys(adamantane)-Arg-Gly-Asp-Ser-bi-PEG1900 
(bi = benzoic imine bond, K(ad)RGDS-PEG1900) was car-
ried out through host–guest interaction between β-CD and 
adamantane group (Fig. 8a). The obtained tumor targeting 
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MOF-based DDS was abbreviated as TTMOF. In the in vivo 
experiments, hepatoma H22 tumor-bearing mice were 
treated with PBS, 5.0 mg kg−1 free DOX, 5.0 mg kg−1 DOX-
loaded TTMOF, and 50 mg kg−1 empty TTMOF, respec-
tively. Both DOX-loaded TTMOF and free DOX exhibited 
significant tumor growth inhibition (Fig. 8c, d). Studies 
demonstrated that premature drug release was efficiently 
prevented by multifunctional surface coating. In addition, 
enhanced tumor uptake and controlled drug release were 
achieved as a consequence of pH-responsive benzoic imine 
bond and redox-responsive disulfide bond. Later, exosome-
coated MOF nanoparticles as a smart and efficient drug 
delivery system has been reported, which exhibited high 
therapeutic efficiency and no premature leakage [114].

In addition to anticancer drugs, delivery of other agents 
by MOF-based DDS have been achieved in recent years. For 
example, Mao et al. reported in vivo metabolic labeling of 
bacteria using MIL-100 (Fe) nanoparticles as the nanocar-
rier for precise delivery of 3-azido-D-alanine (D-AzAla) [81]. 
After intravenous injection of D-AzAla@MIL-100(Fe) into 
MRSA-bearing mice, followed by intravenous injection of 
DBCO-Cy5, the infected tissue of mice showed a significant 
DBCO-Cy5 accumulation. Later, Gallis et al. studied ZIF-8 
as a robust platform to support the sustained release of cef-
tazidime, an important antimicrobial agent for many critical 
bacterial infections [83]. The antibacterial properties of cef-
tazidime@ZIF-8 were confirmed against Escherichia coli. 
This is the first study to unequivocally demonstrate direct 
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internalization of MOFs using confocal microscopy via 3D 
reconstructions of z-stacks. Recently, investigation of MOF 
nanocarriers for intraocular incorporation of brimonidine 
tartrate to treat chronic glaucoma has been reported [84]. 
The cytotoxicity tests suggested low toxicity of the nano-
particles in retinal photoreceptor cells (661 W). The Farha 
group immobilized insulin in NU-1000 with a high load-
ing (40 wt%) in 30 min [82]. Studies showed that the MOF 
capsules effectively prevented insulin from degrading in the 
presence of stomach acid and the digestive enzyme, pepsin.

So far, several strategies have been investigated to 
enhance the therapeutic efficiency of MOF-based drug 
delivery systems [115]. MOF nanocarriers for increased 
drug loading, targeted drug delivery, facilitated cellular 
uptake, pH-responsive drug release, and multidrug resist-
ance reversal were discussed in the previous examples. In 
recent years, triggered delivery has been widely studied as a 
powerful strategy to overcome premature drug release. For 
example, Wang et al. synthesized well-dispersed polypyr-
role (PPy)@MIL-100(Fe) nanoparticles with a core–shell 
structure [36]. Upon DOX loading, this drug delivery system 
was employed for synergistic chemo-photothermal therapy 
for cancer cells based-on pH/NIR-responsive drug release 
(Fig. 9a). Similarly, light irradiation was utilized to induce 
drug release from MOFs. Douhal and coworkers encap-
sulated a hydrophilic anticancer drug (topotecan) inside 
MIL-100 NMOF in a "ship in a bottle" fashion [39]. They 
demonstrated that one- and two-photon light irradiation 

could promote stimuli-dependent drug release from the 
NMOFs (Fig. 9b). Remarkably, the formation of topotecan 
aggregates not only avoided burst release but also strongly 
stabilized MIL-100(Fe) against degradation. In addition to 
pH and light irradiation, other triggers have been explored 
for controlled drug release of MOFs, such as magnetic-
responsive MOFs [116, 117], iron-responsive MOFs [118, 
119], temperature-responsive MOFs [120, 121], pressure-
responsive MOFs [122], humidity-responsive MOFs [123], 
and redox-responsive MOFs [124–126].

3.2  Nucleic Acids

Nucleic acids represent a class of biomolecules that contains 
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), 
depending on the type of sugar moiety. Nucleic acids play 
an important role in the storage and expression of genetic 
information. In general, incorporation of nucleic acids into 
MOF nanocarriers could protect them against degrada-
tion and accelerate their cellular uptake. Moreover, surface 
modification of MOF nanoparticles with nucleic acids could 
increase their colloidal stability by providing steric and elec-
trostatic hindrance to aggregation.

In 2014, Mirkin and coworkers reported the first nucleic 
acid–MOF nanoparticle conjugates [68]. First, azide-func-
tionalized UiO-66-N3  (Zr6O4OH4(C8H3O4-N3)6) nanopar-
ticles were obtained by solvothermal synthesis. Then, the 

FeCl3 H3btc

PVP

Pyrrole PPy

(a) (b)

390 or 780 nm

Released TPT

PPy MIL-100 DOXFe3+

pH/HIR-responsive release DOX-loaded
PPy@MIL-100

One- or two-photon photodelivery of
Topotecan (TPT) from MIL-100 NanoMOF

MRINIR
PAIPTT

PPy@MIL-100

DOX

Fig. 9  a Schematic illustration of the synthesis of PPy@MIL-100(Fe) as a pH/NIR-responsive drug carrier for dual-mode imaging and synergis-
tic chemo-photothermal therapy. Reproduced with permission from Ref. [36]. Copyright 2017, The Royal Society of Chemistry. b MIL-100(Fe) 
NMOF for one- or two-photon-induced photodelivery of topotecan. Reproduced with permission from Ref. [39]. Copyright 2013, American 
Chemical Society



 Nano-Micro Lett.          (2020) 12:103   103  Page 16 of 29

https://doi.org/10.1007/s40820-020-00423-3© The authors

surface of this nano-MOF was modified with dibenzylcy-
clooctyne (DBCO)-functionalized DNA through a Cu-free 
strain promoted click reaction. Compared with nonfunc-
tionalized MOF nanoparticles of comparable size (14 and 
19 nm), the synthesized conjugates exhibited higher col-
loidal stability and enhanced cellular uptake efficiency in 
the absence of transfection agents. Studies also showed the 
ability of these nanoparticle conjugates to hybridize with 
complementary nucleic acids in a sequence-specific fash-
ion, which provided promise for application in intracellular 

gene regulation. Recently, Tang et al. reported application 
of ZIF-8 for delivery of plasmid DNA (pDNA) (Fig. 10a) 
[127]. Capping ZIF-8 by polyethyleneimine (PEI) enhanced 
loading capacity and binding affinity to pDNA. Efficient 
gene delivery and expression were observed in MCF-7 
cells. In cytotoxicity studies, precultured MCF-7 cells 
were incubated with different concentrations (80, 100, and 
120 μg mL−1) of pEGFP-C1@ZIF-8, pEGFP-C1@ZIF-
8-PEI 25 kD, and lipofectamine-2000, respectively. After 
transfection for 48 h, a dose-dependent behavior for both 
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pEGFP-C1@ZIF-8 and pEGFP-C1@ZIF-8-PEI 25 kD was 
demonstrated by the transfection efficacy (Fig. 10b). The 
pEGFP-C1@ZIF-8-PEI 25 kD nanoparticles showed a 
higher transfection efficacy (above 10%) in every dosage. 
These results were also confirmed by the confocal images 
(Fig. 10c).

Small interfering RNA (siRNA) was discovered in 1998, 
offering a new way to combat resistant cancers [128]. MOFs 
have been proved as effective nanocarriers for siRNA deliv-
ery to protect it against clearance or degradation before tak-
ing effect in the target cells. The Lin group reported the first 
use of MOF nanocarriers for the co-delivery of cisplatin 
and pooled siRNAs to enhance chemotherapeutic efficacy 
in drug-resistant ovarian cancer cells (SKOV-3 cells) [129]. 
siRNA was loaded on the surface of UiO-type Zr-MOF 
nanoparticles through coordination to  Zr6 clusters with high 
loading efficiency (81.6%), while cisplatin prodrug was effi-
ciently encapsulated into the MOF nanoparticles (12.3 wt%). 
Studies demonstrated the advantages of utilizing MOF 
nanocarriers to protect siRNAs from nuclease degradation, 
increase siRNA cellular uptake, and promote siRNA escape 
from endosomes to silence multidrug resistance genes. 
Therefore, an order-of-magnitude enhancement of chemo-
therapeutic efficacy of cisplatin was achieved. Similarly, 
the Liu group reported the synthesis of MIL-101(Fe) as the 
nanocarrier to co-deliver pooled siRNAs and selenium(Se)/
ruthenium(Ru) nanoparticles to reverse multidrug resistance 
in Taxol-resistant breast cancer cells (Fig. 11a) [130]. The 
endosomal escape of siRNA was investigated by confocal 
laser scanning microscopy. After incubation for 3 h, most 
of the green fluorescence  (siRNAFAM) and red fluorescence 
(lysosome tracker) in the cytoplasm were separated, sug-
gesting the escape of siRNA from the entrapment of endo-/
lysosome to accumulate in the cytoplasm (Fig. 11b). The 
gene transfection efficiency of Se@MIL-101 and Ru@MIL-
101 was measured by EGFP transfection assay in MCF-7/T 
cells (Fig. 11c). The therapy efficacy was enhanced by the 
silencing of MDR genes and interference of microtubule 
(MT) dynamics in MCF-7/T cells. Moreover, high target-
ing specificity to tumor cells, increased antitumor efficacy, 
and reduced systemic toxicity in vivo were observed. These 
studies demonstrated the potential of MOF nanoparticles 
as a novel nanocarrier platform for co-delivery of chemo-
therapeutic agents and siRNAs to drug-resistant cancer cells.

Nucleic acid aptamers usually consist of short strands 
of oligonucleotides. These oligonucleotide molecules can 

be engineered to recognize and bind to specific molecular 
targets such as small molecules, proteins, and nucleic acids 
[131–133]. So far, various aptamers have been selected and 
widely used as effective molecular probes for cancer study 
based on their high binding specificity and sensitivity, ease 
of synthesis, improved storage, as well as lack of immuno-
genicity [134–137]. Particularly, the Tan group pioneered 
the whole-cell systematic evolution of ligands by exponen-
tial enrichment (cell-SELEX) approach for high-affinity 
aptamer selection [138–142]. This method allows for the 
selection of aptamers against specific cell lines to accelerate 
the discovery of biomarkers (Fig. 12). So far, the group has 
successfully selected a series of aptamers through the cell-
SELEX method. For example, aptamers have been selected 
against leukemia [143], lung cancer [144], and cells infected 
with the Vacinia virus [145], as well as aptamers specific for 
phosphorylation epitopes of tau protein [146].

With the development of aptamer selection for molecular 
medicine, MOF nanocarriers for aptamer delivery have been 
investigated during the last few years, taking advantage of 
the unique properties of aptamers. For instance, Fang and 
coworkers demonstrated that AS1411 aptamer-functional-
ized UiO-66@AgNCs@Apt can be internalized effectively 
by target cancer cells (MCF-7 cells) with high selectivity 
through AS1411-mediated endocytosis [147]. Upon one-pot 
incorporation of the anticancer drug DOX, this drug deliv-
ery system exhibited high capability for targeted delivery 
and intracellular controlled release, resulting in enhanced 
antitumor effect in vitro.

Several efforts have been made toward controlled release 
of drugs utilizing aptamer-functionalized MOF nanopar-
ticles. This was achieved by designing MOFs responsive 
to different triggers, e.g., ATP and glucose. The Willner 
group modified the external surface of MOF nanoparticles 
(UiO-68) with ATP-AS1411 hybrid aptamer in caged con-
figurations [148]. ATP is upregulated in cancer cells, while 
AS1411 aptamer identifies the nucleolin receptor sites on 
the cancer cell membrane. In the presence of ATP, the 
MOFs were unlocked by ATP–aptamer complex forma-
tion, releasing the loaded drug molecules (DOX). Experi-
ments revealed high cytotoxic efficacy and highly selective 
permeation of these dual aptamer-modified MOF nanocar-
riers into MDA-MB-231 breast cancer cells as compared 
to MCF-10A normal epithelial breast cells. The group sub-
sequently designed glucose-responsive MOF nanocarriers 
for controlled release of drugs [149]. ZIF-8 nanoparticles 
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were loaded with glucose oxidase (GOx) and antivascular 
endothelial growth factor aptamer (VEGF aptamer). Upon 
GOx-mediated aerobic oxidation of glucose, the products 
gluconic acid and  H2O2 acidified the microenvironment 
and caused pH-induced degradation of MOFs to release 
drugs (Fig. 13a). The VEGF aptamer could potentially 
inhibit angiogenic regeneration of blood vessels. The 
loadings of VEGF aptamer and GOx were confirmed by 
confocal microscopy imaging (Fig. 13b). Panels I and II 
suggested that the Cy3-modified VEGF aptamer (red) and 
the coumarin-functionalized GOx (blue) were success-
fully incorporated into ZIF-8. The Fan group reported 

immunostimulatory DNA–MOFs (isMOFs) containing 
cytosine–phosphate–guanosine (CpG) oligonucleotides, 
which exhibited high cellular uptake, organelle specificity, 
and spatiotemporal control of Toll-like receptors (TLR)-
triggered immune responses [150].

3.3  Proteins

Proteins are macromolecules consisting of one or more long 
chains of amino acid residues. They serve a large number 
of functions, such as DNA replication, metabolic reaction 
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catalysis, and molecular transport. Since proteins have large 
size, charged surface, and environmental sensitivity, it is dif-
ficult for proteins to naturally cross cell membranes without 
losing structural integrity. In order to utilize proteins for 
therapeutic purposes, MOF nanoparticles for intracellular 
delivery of proteins have attracted increasing attention in 
recent years.

For example, Farha et al. selected NU-1000 and PCN-
222/MOF-545 nanoparticles as the host for insulin encap-
sulation [151]. The surface of MOFs was modified with 
phosphate-terminated nucleic acids for increased colloi-
dal stability and cellular uptake. Compared to the native 
protein, a tenfold enhancement of cellular uptake was 
achieved. The Zheng group synthesized a pH-sensitive 
nanocomposite with a core–shell structure as the drug 
delivery system [152]. Biocompatible bovine serum albu-
min (BSA) and DOX (BSA/DOX) core was protected by 
the ZIF-8 shell. The BSA/DOX@ZIF-8 showed greater 

antitumor efficacy than that of free DOX against breast 
cancer cell line MCF-7.

Recently, Mao and coworkers have developed zeolitic 
imidazole framework-90 (ZIF-90) as a general platform to 
deliver different proteins into the cytosol, independent of 
their size and molecular weight [153]. Protein encapsulation 
was performed by self-assembly of imidazole-2-carboxal-
dehyde,  Zn2+, and the protein (Fig. 14a). Degradation of 
nanoparticles to release protein was observed in the presence 
of ATP. HeLa cells were treated with ZIF-90/GFP nanoparti-
cles for cellular uptake study. According to the flow cytom-
etry analysis, the cellular uptake of ZIF-90/GFP increased 
proportionally with the concentration of GFP increasing 
from 40 to 100 μg mL−1 (Fig. 14b). Next, different endocy-
tosis inhibitors were selected for pretreatment. Among them, 
only sucrose reduced the cellular uptake efficiency signifi-
cantly (down to 17%) (Fig. 14c), indicating that ZIF-90/GFP 
is mainly internalized via clathrin-mediated endocytosis. 
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After incubation of HeLa cells with 50 μg mL−1 ZIF90/
GFP nanoparticles, a significant accumulation of GFP in the 
cytosol was observed by CLSM imaging (Fig. 14d). Further-
more, ZIF-90/protein nanoparticles were used to success-
fully deliver cytotoxic RNase A for tumor cell growth inhibi-
tion, as well as genome-editing protein Cas9 to knock out the 
green fluorescent protein (GFP) expression of HeLa cells.

Enzymes are a class or proteins that can catalyze many 
complex reactions in organisms with high selectivity. So 
far, enzyme–MOF composites have been widely studied for 
catalysis, sensing, and detection [154–157]. Recently, cellular 
delivery of enzymes by MOF nanocarriers for cancer therapy 
has been reported by the Zhou group. These MOFs showed 
better selectivity and less systemic toxicity than conventional 
chemotherapy [158]. Tyrosinase was encapsulated into PCN-
333(Al) (TYR@PCN-333) to form an enzyme–MOF nano-
reactor to activate the cancer prodrug paracetamol (APAP). 
The reaction generated reactive oxygen species (ROS) and 
depleted glutathione (GSH), inducing cytotoxicity in drug-
resistant cancer cells. Compared to free enzyme, the MOF 
nanocarrier provided protection against enzyme deactivation 
and thus extended the antitumor efficacy of TYR@PCN-333.

3.4  Challenges

Although remarkable achievements have been made to 
apply MOFs for drug delivery, several challenges still exist 
in this field. First, only limited studies on the kinetics of 
drug loading and release have been reported so far. Recently, 
the Horcajada group has demonstrated that the drug loading 
process is governed by the accessibility of cages in MOFs, 
while the loading capacity is influenced by the hydrophobic-
ity/hydrophilicity of MOFs and the drug molecules [159]. 
For instance, the loading rates of hydrophilic acetylsalicylic 
acid (AAS) and hydrophobic isobutylphenylpropanoic acid 
(IBU) into UiO-66 are 0.0301 and 0.0295 M h–1, respec-
tively. However, higher total drug loading capacity of IBU 
(35.5%) was observed compared to that of AAS (25.5%). 
It is worth noting that the solvent may also affect the drug 
loading rate. According to their studies, both the structure of 
MOFs and the hydrophobic/hydrophilic nature of the drug 
molecules could affect the rate of drug release. For example, 
a faster release of AAS from the open-structured MIL-100 
(1 day) was observed, while a slower AAS release from the 
narrow 1D pore system of MIL-127 (6 days) was detected. 
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Furthermore, a mismatch in hydrophobicity and hydrophilic-
ity could result in a fast drug release. For example, hydro-
philic AAS underwent a quick release from hydrophobic 
UiO-66 (1 day).

Another major challenge for clinical applications of 
MOF-based DDS is the potential toxicity. However, the 
existing literature is very limited and insufficient to draw 
a conclusion about the toxicity of MOF nanoparticles. So 
far, many in vitro toxicity studies have been conducted 
on different cell lines, making it very difficult to compare 
the obtained results. For instance, nanoZIF-8 (200 nm) 
was evaluated against three human cell lines, namely 
NCI-H292, HT-29, and HL-60. Results suggested that 
nanoZIF-8 is nontoxic to these cells [101]. However, in 
another report, nanoZIF-8 (90 nm) showed cytotoxic-
ity toward HeLa and J774 cell lines [160]. Recently, the 
in vivo toxicity of nanoscale MOFs has been assessed 

against zebrafish embryos [161]. The study revealed that 
the toxicity of MOFs was mainly attributed to the leached 
metal ions. In contrary, three different Fe(III)-based MOF 
nanoparticles (MIL-88A, MIL-100, and MIL-88B_4CH3) 
were injected in rats at high doses. The results suggested 
that these MOF nanoparticles exhibited low acute toxicity 
and were rapidly sequestered by liver and spleen. Accord-
ing to the studies by Baati et al., the MOF nanoparticles 
could undergo further biodegradation and elimination in 
urine or feces without metabolization and causing signifi-
cant toxicity [162]. In order to reach the clinical devel-
opment stage of MOF nanoparticles, the performance 
of MOF-based DDS should be optimized for preclinical 
evaluation by conducting systematic in vivo studies on 
their stability, degradation mechanics, and side effects on 
normal organs.
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4  Conclusions and Perspectives

During the past few decades, MOFs have been extensively 
studied for a variety of applications by their well-defined 
structure, high surface area, high porosity, tunable pore size, 
and easy functionalization. In particular, exploring MOFs 
as a nanocarrier for drug delivery in biomedical applica-
tions has attracted great interest in recent years. Currently, 
various molecules have been investigated as the therapeu-
tic agents for disease treatment, such as anticancer drugs, 
nucleic acids, and proteins. In this review, we summarized 
four strategies commonly used to functionalize MOFs with 
therapeutic agents for drug delivery. They include surface 
adsorption, pore encapsulation, covalent binding, and func-
tional molecules as the building block. The van der Waals 
interaction, π–π interaction, and hydrogen bonding are the 
main forces involved in surface adsorption and pore encap-
sulation approaches. Functional molecules are covalently 
bound to the framework through inorganic metal clusters or 
organic linkers by the covalent binding method. Moreover, 
functional molecules can be incorporated into the framework 
as organic ligands. Then, we thoroughly discussed recent 
progress of biological applications of MOF nanocarriers 
for drug delivery. Benefiting from unique advantages of 
MOFs, many drug molecules have been efficiently delivered 
by MOF nanoparticles. Among them, drugs, nucleic acids, 
and proteins were selected for discussion in this section.

Despite remarkable achievements made in this field, sev-
eral challenges remain to be solved. First, although many 
functionalization methods have been reported, they all pos-
sess some limitations. For instance, molecules incorporated 
by surface adsorption and pore encapsulation tend to leak 
gradually owing to weak interaction forces. Covalent bind-
ing provides stronger interactions, but it requires complex 
synthetic procedures and may influence the activity of func-
tional molecules. On the other hand, the organic ligands suit-
able for MOF synthesis are usually rigid and highly symmet-
rical, which makes it difficult to directly utilize biomolecules 
as the building block. Such limitations call for the develop-
ment of advanced functionalization strategies to incorporate 
a wide variety of potential therapeutic agents into MOFs 
to explore their clinical applications. Second, the kinetics 
of drug loading and release, in vivo toxicity, degradation 
mechanism, and pharmacokinetics of MOF nanoparticles 
are still under study. Further investigations are required to 

rationally design MOF–drug conjugates with enhanced bio-
stability, biocompatibility, and therapeutic efficacy. In con-
clusion, MOFs possess unique properties and show great 
promise for intracellular drug delivery to treat diseases. 
In the future, efforts should be focused on overcoming the 
noted challenges to fully realize the potential of MOFs as 
drug delivery systems in clinical applications.
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