Supporting Information for

Near-Infrared Light-Responsive Nitric Oxide Delivery Platform for

Enhanced Radioimmunotherapy

Xuanfang Zhou¹, Zhouqi Meng^{1, *}, Jialin She¹, Yaojia Zhang¹, Xuan Yi², Hailin Zhou², Jing Zhong², Ziliang Dong¹, Xiao Han¹, Muchao Chen¹, Qin Fan¹, Kai Yang², Chao Wang^{1, *}

¹Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China

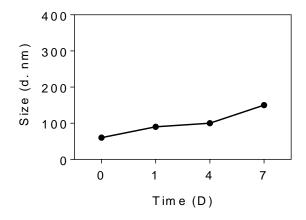
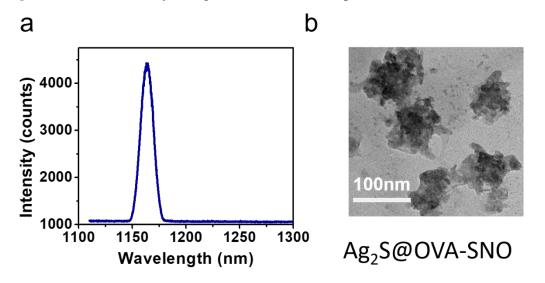
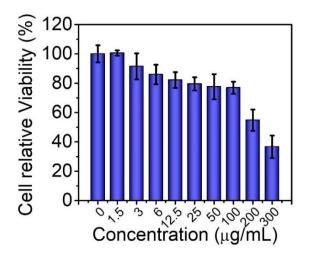
²State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China

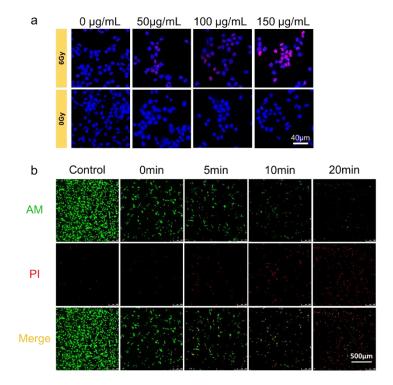
*Corresponding authors. E-mail: cwang@suda.edu.cn (Chao Wang), mengzhouqi@gmail.com (Zhouqi Meng)

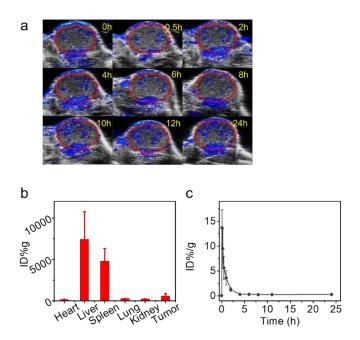
Supplementary Table and Figures

Table S1 Hemolysis ratio of the nanoparticle's solution compared with negative and positive control (3 samples in each group)

	Negative control	Positive control	Ag ₂ S@BSA- SNO	Ag ₂ S@BSA- SNO	Ag ₂ S@BSA- SNO
			(5 mg mL ⁻¹)	(10 mg mL ⁻¹)	(20 mg mL ⁻¹)
Absorbance	0.061±	1,422±	0.065 ± 0.002	$0.069 {\pm} 0.007$	$0.081 {\pm} 0.006$
intensity	0.001	0.016			
Hemolysis	-	-	0.293%	0.612%	1.4%


Fig. S1 Colloidal stability of Ag₂S@BSA-SNO nanoparticles in one week


Fig. S2 Characteristics of our nanoparticles. (**a**) Fluorescence of $Ag_2S@BSA-SNO$ solution. (**b**) TEM image of $Ag_2S@OVA-SNO$ nanoparticles

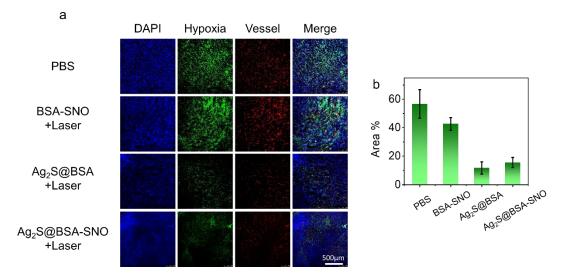

Fig. S3 In *vitro* therapeutic efficiency of our nanoparticles. MTT data of $Ag_2S@BSA-SNO$ nanoparticles after being incubated with materials 24 h

Fig. S4 In *vitro* therapeutic efficiency of our nanoparticles. (a) DNA damage staining of cells under different dose and material concentration treatments. Red: γ -H2AX signal (DNA damage); Blue: DAPI (nuclear staining). (b) Confocal image of AM/PI double stained experiments. Green: AM staining (live cells); red: PI staining (dead cells)

Fig. S5 (a) PA image of PBS group. (b) Bio-distribution of $Ag_2S@BSA-SNO$. (c) Blood circulation of $Ag_2S@BSA-SNO$ nanoparticles after intravenous injection. The concentrations are determined by element Ag

Fig. S6 Hypoxia staining of tumor tissue after various treatments. (**a**) Confocal images of tumor sections Green: hypoxia probe; red: anti-CD31 antibody (blood vessels); blue: DAPI (nuclear staining). (**b**) Statistic data of hypoxia area in the confocal image

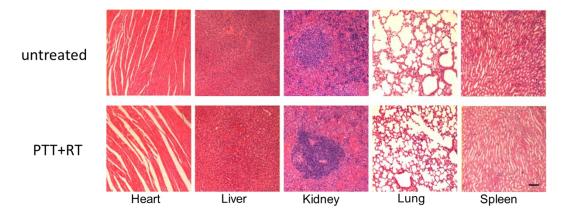


Fig. S7 H&E staining of various tissue sections from different mice