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Supplementary Figures and Tables 

 

Fig. S1 TEM images of the N, O co-doped graphene/MnO composite 
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Fig. S2 SEM images of the (a) RGO, (b) GB, (c) RGO/S, and (d) GB/S 

 

Fig. S3 XRD patterns of the graphene oxide/MnO2 and N, O co-doped 

graphene/MnO composites 

 

Fig. S4 XRD patterns of the NOGB, GB, and RGO 
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Fig. S5 TGA curves of the NOGB/S, GB/S, and RGO/S 

 

Fig. S6 Raman spectra of the NOGB, GB, and RGO 

 

Fig. S7 XPS O 1s spectra of the (a) GB and (b) RGO. (c) XPS C 1s spectrum of the 

NOGB  
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Fig. S8 CV curves for the first four cycles of the (a) NOGB/S, (b) GB/S, and (c) 

RGO/S 

 

Fig. S9 Comparison of long-term cyclic properties at 1 C of the NOGB/S at different 

thermal treatment temperature 

We have prepared the NOGBs at different thermal treatment temperatures from 600 

to 900°C, which were named as NOGB-X (X stands for the temperature). As seen in 

Fig. S9, the capacity first increases with the thermal treatment temperature, reaching 

the maximum value for NOGB-800/S, then decreases for NOGB-900/S. This is 

mainly due to the trade-off between the conductivity and heteroatom content of the 

doped carbon materials. The thermal treatment temperature is like a double-edged 

sword. With the increasing of thermal treatment temperature, the electrical 

conductivity of carbon materials is improved. However, the heteroatom content is 

drastically decreased due to the unsatisfied thermal stability of the functional groups. 

Therefore, the electrochemical performance of the carbon host is strongly dependent 

on the temperature controlled synergy of electrical conductivity, heteroatom doping, 

and surface polarity. 
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Fig. S10 Gravimetric and areal capacities of the NOGB/S electrode with a sulfur 

loading of 4.4 mg cm-2 at 0.1 C 

 

Fig. S11 Photographs of the separators from the disassembled batteries after 50 

cycles at 1 C for the (a) NOGB/S, (b) GB/S, and (c) RGO/S electrodes 

 

Fig. S12 Li 1s of the GB/S and NOGB/S electrodes after discharging to 2.3 V at 0.1 

C 
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Table S1 Texture properties of the samples measured by N2 adsorption-desorption 

isotherms 

Sample SBET
a 

(m2 g-1) 

VTotal
b 

(cm3 g-1) 

NOGB 92.718 0.382 

NOGB/S 2.564 0.037 

a Specific surface area calculated by BET method 

b Total pore volume
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Table S2 Surface species concentration for the NOGB, GB, and RGO measured by XPS 

Sample 

C (at%) N (at%) O (at%) 

Total C=C C-N/C-O C=O COOH Total 
Pyridinic 

N 

Pyrrolic 

N 

Graphite 

N 
Total -COOC- C=O C-OH 

NOGB 78.9 81.2% 6.1% 4.6% 8.2% 3.0 55.5% 28.8% 15.7% 18.1 7.1% 43.0% 49.9% 

GB 84.3 79.8% 10.7% 1.8% 7.7% — — — — 15.7 8.9% 49.5% 41.6% 

RGO 82.4 80.6% 9.6% 3.8% 6.0% — — — — 17.6 8.7% 47.6% 43.7% 
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Table S3 Electrochemical kinetics parameters from the EIS curves for Fig. 3e 

Sample RS (Ω) Rct (Ω) WR (Ω) 

NOGB/S 4.93 4.08 15.44 

GB/S 6.15 6.76 17.80 

RGO/S 6.96 80.60 48.79 

 

Table S4 Comparison of the capacities and cycle stability in previous reports 

Sulfur host 

sulfur 

content 

(wt%) 

sulfur 

loading 

(mg cm-2) 

Cyclability Rate Capability 

Refs. Cycle 

No. 

Rate 

(C) 

Capacity 

(mAh g-1) 

Capacity 

decay 

rate (%) 

Rate 

(C) 

Capacity 

(mAh g-1) 

p-CNT@Void@MnO2/S 65 0.65–1.06 100 1 526 0.122 2 ~450 [S1] 

NC-800-S60 60 0.8–1.0 400 0.48 511 0.110 0.96 385 [S2] 

Co-VN@C/S 70 ∼1.3−1.5 300 1 602 0.083 5 490 [S3] 

S@PONHC/G 70 1.0−1.2 500 1 607.7 0.052 3 533 [S4] 

HCMs-S 78 ~1.5 900 1 520 0.04 10 270 [S5] 

3DG@NPC/S 70 ~1.5 500 1 667 0.083 3 726 [S6] 

Our work 76 ~1.2 
1000 1 526.4 0.038 

10 432.7  
400 5 472.3 0.027 
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