Supporting Information for

Hierarchical Carbon Microtube@Nanotube Core-Shell Structure for High

Performance Oxygen Electrocatalysis and Zn-air Battery

Wenfu Xie¹, Jianming Li², Yuke Song¹, Shijin Li¹, Jianbo Li¹, Mingfei Shao^{1, *}

¹State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing 100083, People's Republic of China

*Corresponding author. E-mail: shaomf@mail.buct.edu.cn (Mingfei Shao)

Supplementary Figures and Tables

Fig. S1 SEM images of PP at different magnifications

Fig. S2 SEM images of PP@PDA at different magnifications

Fig. S3 SEM images of CMT@CNT at different magnifications

Fig. S4 HRTEM image of CMT@CNT

Fig. S5 SEM images of (a, b) ZIF-67 and (c, d) ZIF-C at different magnifications

Fig. S6 (a) TEM and (b) SEM images of CMT

Fig. S7 XRD patterns of CMT@CNT, CMT and ZIF-C

Fig. S8 XPS spectra of CMT@CNT, CMT and ZIF-C

Fig. S9 CV curves of CMT@CNT, CMT, ZIF-C and Pt/C in O2-saturated 0.1 M KOH

Fig. S10 LSV curves of (**a**, **b**) ZIF-C, (**c**, **d**) CMT, and (**e**, **f**) Pt/C for ORR at various rotation rates and the corresponding Kouteck–Levich plots at various potentials calculated from rotating disk electrode measurement data

Fig. S11 RRDE measurements of CMT@CNT, CMT, ZIF-C, and Pt/C in O₂-saturated 0.1 M KOH

Fig. S12 CV curves of (a) CMT@CNT, (b) ZIF-C, and (c) CMT at various scan rates of 20, 40, 60, 80, 100, and 120 mV s⁻¹

Fig. S13 SEM images of CMT@CNT after stability test with different magnification

Fig. S14 I-t test of CMT@CNT and Pt/C with addition of methanol

Fig. S15 Open-circuit plots of the all-solid-state ZABs based on CMT@CNT and ZIF-C bending at different angles

Fig. S16 Discharge polarization curves and the corresponding power density plots of ZIF-C-based ZAB at different catalyst mass loading

Sample	C (Atomic %)	N (Atomic %)	O (Atomic %)	Co (Atomic %)
СМТ	86.66	7.53	4.81	0.00
ZIF-C	87.68	1.75	8.96	1.61
CMT@CNT	88.95	3.49	6.74	0.82

Table S1 Element contents measured by XPS

Table S2 Summary of N2 sorption isotherm results

Sample	BET Surface Area (m ² g ⁻¹)	Pore Volume (cm^3 g^{-1})	Pore Size (nm)
CMT	33.36	0.08	~31.56
ZIF-C	320.57	0.29	~7.59
CMT@CNT	354.27	0.51	~8.09

Table S3 Summary of electrochemical performance of CMT@CNT and references in this work

Sample	<i>j</i> for ORR (mA cm ⁻²)	Half <i>E</i> (V _{RHE})	H2O2 (%)	n	η ₁₀ for OER (V)	ΔΕ
CMT	-3.92	0.75	10.66	3.78	384	0.864
ZIF-C	-4.61	0.86	4.12	3.91	348	0.718
CMT@CNT	-5.47	0.88	3.29	3.93	328	0.678
Pt/C	-5.43	0.82	3.39	3.93	-	0.763
Ir/C	-	-	-	-	353	

Sample	<i>j</i> for ORR (mA cm ⁻²)	Half <i>E</i> (V _{RHE})	η_{10} for OER (V)	ΔE	Refs.
CMT@CNT	-5.47	0.88	328	0.678	This work
FeNC–S– Fe _x C/Fe	-5.66	0.887	320	0.680	S1
NB-CN	-	0.835	420	0.815	S2
NPCS-900	-5.45	0.830	420	0.820	S3
Co ₃ O _{4-x} HoNP-60	-5.82	0.834	313	0.740	S4
NiFe-LDH /Co,N-CNF	-	0.790	312	0.752	S5
NiCo ₂ O ₄ /Co,N-CNTs	-	0.862	339	0.707	S6
NDGs-800	-5.60	0.850	450	0.830	S7
NCN-1000-5	-6.43	0.820	410	0.810	S8

Table S4 Summary of electrochemical performance of CMT@CNT and the reported work

Table S5 Summary of ZAB performance of CMT@CNT and the reported work

Sample	Open-circuit voltage (V)	Power density (mW cm ⁻²)	Specific Capacity (mAh gzn ⁻¹)@j (mA cm ⁻²)	Energy density (Wh kg _{Zn} ⁻¹)@j (mA cm ⁻²)	Refs
CMT@CNT	1.45	160.6	781.7@10	930.2@10	This work
FeNC–S– Fe _x C/Fe	1.41	149.4	663@10	795@10	[S1]
NB-CN	1.4	320	-	-	[S2]
NPCS-900	-	79	625@20	656.25@20	[S3]
Co ₃ O _{4-x}	1.459	94.1	779.36@-	-	[S4]

HoNP-60					
NiCo ₂ O ₄	1 45	172 7			[9/]
/Co,N-CNTs	1.43	1/3./	-	-	[56]
NDGs-800	1.45	115.2	750.8@10	872.3@10	[S7]
NCN-1000-5	1.44	207	672@10	805@10	[S8]

Supplementary References

- [S1]Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe-N-C catalyst containing Fe_xC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. **30**(46), e1804504 (2018). http://doi.org/10.1002/adma.201804504
- [S2]Z.Y. Lu, J. Wang, S.F. Huang, Y.L. Hou, Y.G. Li et al., N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 42, 334-340 (2017). http://doi.org/10.1016/j.nanoen.2017.11.004
- [S3]S. Chen, L.L. Zhao, J.Z. Ma, Y.Q. Wang, L.M. Dai, J.T. Zhang, Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 60, 536-544 (2019). http://doi.org/10.1016/j.nanoen.2019.03.084
- [S4]D. Ji, L. Fan, L. Tao, Y. Sun, M. Li et al., The kirkendall effect for engineering oxygen vacancy of hollow Co₃O₄ nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. Int. Ed. 58(39), 13840-13844 (2019). http://doi.org/10.1002/anie.201908736
- [S5]Q. Wang, L. Shang, R. Shi, X. Zhang, Y.F. Zhao et al., NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7(21), 1700467 (2017). http://doi.org/10.1002/aenm.201700467
- [S6]J. Li, S. Lu, H. Huang, D. Liu, Z. Zhuang, C. Zhong, ZIF-67 as continuous self-sacrifice template derived NiCo₂O₄/Co,N-CNTs nanocages as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries. ACS Sustain. Chem. Eng. 6(8), 10021-10029 (2018). http://doi.org/10.1021/acssuschemeng.8b01332
- [S7]Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 3(5), 1183-1191 (2018). http://doi.org/10.1021/acsenergylett.8b00303
- [S8]H. Jiang, J.X. Gu, X.S. Zheng, M. Liu, X.Q. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12(1), 322-333 (2019). http://doi.org/10.1039/c8ee03276a