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HIGHLIGHTS

• Recent advances in diagnosis and treatment of thrombosis using nano-medicine are summarized in this review.

• The diagnosis system based on biomarkers and imaging nanoprobes could enable the detection in early state of thrombosis.

• The targeted drug delivery nanosystems serve as clinically translatable theranostics for thrombosis treatment with minor side effects.

ABSTRACT Thrombosis is a global health issue and one of the leading factors of 
death. However, its diagnosis has been limited to the late stages, and its therapeutic 
window is too narrow to provide reasonable and effective treatment. In addition, 
clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, 
and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention 
in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their 
convertible properties. Furthermore, diagnosis and treatment of thrombosis using 
nano-medicines have also been widely studied. This review summarizes the recent 
advances in this area, which revealed six types of nanoparticle approaches: (1) 
in vitro diagnostic kits using “synthetic biomarkers”; (2) in vivo imaging using 
nano-contrast agents; (3) targeted drug delivery systems using artificial nanopar-
ticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery 
systems using biological nanostructures; and (6) treatments with external irradia-
tion. The investigations of nano-medicines are believed to be of great significance, 
and some of the advanced drug delivery systems show potential applications in clinical theranotics.
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1 Introduction

Thrombosis, or the formation of a malignant blood clot, 
is associated with many cardiovascular diseases, such as 
myocardial infarction and stroke. It is also one of the lead-
ing causes of death [1–5]. In thrombus formation, platelets, 
coagulation, and flow conditions play primary roles, and 
understanding these factors could provide new methods for 
the treatment of thrombosis [6–8]. However, the diagno-
sis of thrombosis is limited to late stages, and the narrow 
therapeutic window makes it unable to provide reasonable 
and effective treatment [9, 10]. Thus, the early diagnosis of 
thrombosis is urgently required.

The main antiplatelet and anticoagulant agents for throm-
bolysis treatment are heparin, urokinase plasminogen activa-
tor (uPA), tissue plasminogen activator (tPA), recombinant 
tPA (rtPA), and streptokinase (SK) [11, 12]. With the help 
of these agents, thrombus can be dissolved, or thrombus 
formation can be slowed down. However, these protein-
based agents suffer from a short half-life, allergic reactions, 
or inactivation. Furthermore, due to the low accumulation 
efficiency and poor targeting ability, these agents have lit-
tle therapeutic effect [13]. Unfortunately, this might give 
rise to unwanted hemorrhage in tissues or sites and induce 
other severe cardiovascular diseases. Thus, it is important to 
efficiently deliver thrombolytics to thrombus with minimum 
adverse effects for clinical application [14].

In recent years, nano-medicine has gained extensive atten-
tion among scientific researchers and clinicians since the 
first study in the late 1990s [14, 15]. Many nanoparticle-
based drug delivery systems have been investigated [16, 
17], including polymeric nanoparticles (liposomes and 
micelles), gold/silver/platinum noble metal nanoparticles, 
silica nanoparticles, carbon nanostructures (graphene oxide 
and carbon nanotubes), up-conversion nanoparticles, and 
metal–organic frameworks. Many nanoparticle-based detec-
tion systems have also been constructed [14, 18]. Nanopar-
ticles are widely studied in modern healthcare due to their 
convertible shape, size, physicochemical properties, and sur-
face-area-to-volume ratio [19, 20]. Various nano-medicines 
have been studied in disease therapeutics, which have been 
proven to enhance treatment efficiency significantly and 
meet the requirements of individualized treatment [21–23]. 
Recently, Huang et al. [13] have summarized the drug deliv-
ery systems toward thrombosis treatment, with emphasize on 

the delivery of thrombolytics under the outside irradiation-
directed targeting. In this review, we summarize the recent 
advances regarding to nano-medicine-based thrombosis 
diagnosis and treatment (Fig. 1): (1) in vitro diagnostic kits 
using “synthetic biomarkers”; (2) in vivo imaging; (3) tar-
geted drug delivery systems using artificial nanoparticles; 
(4) microenvironment responsive drug delivery systems; 
(5) drug delivery systems using biological nanostructures; 
(6) treatments with external irradiation. In addition, we 
outlook for further studies to meet the demands of clinical 
applications.

2  Nanoparticle‑Based Diagnosis

2.1  In Vitro Diagnosis

In vitro diagnosis has widely been studied for many diseases 
due to its advantages of simplicity, rapidness, and noninva-
siveness [24, 25]. Methods using commercial 96-well plates, 
such as the enzyme-linked immunosorbent assay (ELISA), 
have been applied in hospital diagnosis. Nanoparticle-based 
assays in vitro have been constructed to detect biomarkers 
with a low detection limit for the diagnosis of diseases at 
an early stage [26–28]. However, the biomarkers associated 
with thrombosis could not be detected directly by in vitro 
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Fig. 1  Scheme illustration of nano-medicine-based thrombosis diag-
nosis and treatment
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assays because the biomarkers only exist in blood clots, and 
there are no prominent biomarkers in the blood.

The by-product produced when prothrombin is cleaved 
into thrombin is prothrombin fragment 1.2, and the by-
product of fibrin degradation is D-dimer. These by-products 
show poor specificity in thrombosis detection [29]. Thus, 
the in vitro diagnosis of thrombosis cannot be achieved in 
an ordinary way, and the specific biomarkers for thrombosis 
should be investigated. The renal system could quickly and 
selectively filter the biological by-products from the blood, 
but the “synthetic biomarkers” collected from the metabo-
lism after injection could be an effective solution [30, 31].

Thrombin-activatable peptide (TAP) only responds to 
thrombin activity and is specifically cleaved by thrombin. 
Bhatia et  al. [32] attempted to detect thrombosis using 
synthetic biomarkers. In the assay, iron oxide nanoworms 
(NWs) were prepared as a nano-carrier for the agents [32, 
33]. A ligand-labeled peptide containing the TAP sequence 
was constructed, and peptide derivatives were modified 
on the surface of the NWs (Fig. 2a-1). The prepared nano-
composites showed selectivity to thrombin, and the peptide 

fragment was released from the nanocomposites under 
thrombin activity.

After the nanocomposite and thromboplastin were co-
injected into mice intravenously, urine was collected, and 
the dispersed peptide fragment was detected in vitro using 
ELISA (Fig. 2a-2) or a paper assay (Fig. 2a-3). This kind of 
thrombin-cleavable fluorogenic probe could also be applied 
to fluorescent imaging of the localized blood clots in vivo, 
and the intensity attenuation reveals the thrombosis. How-
ever, the assay requires metabolism in vivo for a long time 
and could not realize the rapid determination for thrombosis. 
Furthermore, the administration route of intravenous injec-
tion also limits the possibility of home-supplied point of 
care.

To realize the synthetic biomarker test strategy with fast 
speed to enable facile monitoring of at-risk patients, Bhatia 
et al. [34] conjugated the peptide derivative to the surface 
of a poly(ethylene glycol) scaffold (PEG-T1E) to prepare 
another synthetic biomarker nanocomposite (Fig. 2b-1). The 
hydrodynamic diameter of PEG-T1E (40 kDa) was ~ 8 nm, 
and it could promote the subcutaneous delivery of the 
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Fig. 2  “Synthetic biomarkers” for detection of thrombus. a The “synthetic biomarkers” was prepared using the NW and thrombin-sensitive sub-
strate conjugated ligand reporter (1); after intravenous injection of “synthetic biomarkers,” the ligand reporter was released due to the thrombin 
activity, the urine was then collected and detected by ELISA (2) or paper assay (3) [32]. Copyright 2013 Creative commons. b The “synthetic 
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tion, the urine was collected and the detection assay was carried out [34]. Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA
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nanocomposite into the bloodstream. In addition, the urine 
signal after subcutaneous administration of the synthetic 
biomarkers was increased for 3 h and maintained for hours.

When the biomarker was subcutaneously injected into 
mice, and thromboplastin was administered 2 h later, the 
in vitro assay could clearly distinguish the thromboplastin-
treated mice (Fig. 2b-2). The test strategy could help to 
monitor for postoperative complications, in which throm-
bosis might delay the diagnosis. With further development, 
this synthetic-biomarker urine diagnosis strategy might be 
applied clinically and support the accurate diagnosis and 
location of the thrombus.

2.2  In Vivo Imaging

Many imaging modalities have been applied in thrombus 
detection, including ultrasound (US) imaging [35], mag-
netic resonance imaging (MRI) [36], and positron emission 
tomography (PET) [37]. However, conventional imaging 
only shows applicability to aged clots, and the early diagno-
sis and evaluation of thrombosis are still in great demand. 
The visualization of biomarkers associated with thrombosis 
is fundamental to modern molecular imaging, and further 
investigation is necessary for precise treatment. There are 
many biological features, such as fibrin, activated platelets, 
and factor XIII, which are closely related to the formation 
of thrombosis. The associated biomarkers can act as target-
ing molecules for diagnosis [36]. With the development of 
thrombosis diagnostic techniques, various contrast agents 
have been produced, and the MR probe EP-2104R (fibrin-
targeted agents) has already entered clinical trials [38, 39].

Furthermore, nanoparticles could diffuse into thrombi 
selectively. Combined with the excellent imaging perfor-
mance of nanoparticles, nanoparticle-based contrast agents 
containing a targeting molecule might provide accurate 
detection of thrombosis. For example, magnetic nanoparti-
cles have been widely studied on account of their outstand-
ing MRI contrast properties [40–42], and Food and Drug 
Administration (FDA) has approved Feridex@ (a kind of 
magnetic nanoparticle) for the use in MRI diagnosis. The 
magnetic nanoparticle-based MRI diagnosis of thrombus has 
been investigated:

(1) Previous studies have confirmed that several sulfated 
polysaccharides such as fucoidan could bind to P-selec-
tin, which is involved with the intraluminal thrombus 

[43]. Ultrasmall superparamagnetic iron oxide nano-
particles (USPIOs) were modified with fucoidan and 
maintained high T2 relaxation [44]. The contrast agent 
was applied to detect platelet-rich thrombi, and its 
selectivity to the thrombus area with rapid speed was 
confirmed.

(2) The cyclic Arg-Gly-Asp (cRGD) peptide was 
reported to target the activated platelets due to the 
surface-overexpressed GPIIb/IIIa receptor [45]. The 
cRGD peptide was decorated on the surface with 
 Fe3O4-poly(lactic-co-glycolic acid) nanoparticles 
 (Fe3O4@PLGA) [46]. The coated PLGA layer provided 
the nanoparticles with excellent biocompatibility for 
cardiovascular diseases. After injection with nanopar-
ticles, the T2 signal of the area decreased after 10 min 
and then slightly increased until 50 min. The result 
demonstrated that the surface cRGD peptide enabled 
the accumulation of MRI contrast agents in the mural 
thrombus, regardless of the high shear stress.

(3) Single-chain antibody (scFv) was also applied to target 
the activated GPIIb/IIIa receptors. After scFv was con-
jugated on the surface of T1/T2 dual-contrast magnetic 
nanoparticles, dual MR contrast was applied to throm-
bus imaging. After the targeted nanoparticles were 
injected into model mice, the T1 signal was enhanced, 
and the T2 signal was decreased and varied over time. 
The use of dual MR images by one contrast agent could 
help enhance the accuracy of the diagnosis.

CT imaging has difficulty in distinguishing a thrombus 
from adjacent blood. High-Z elements can absorb X-rays, so 
many materials have been designed as CT contrast agents, 
including gold (Au), bismuth (Bi), and zirconium (Zr)-based 
nanostructures and iodine (I)-containing nanostructures 
[47–49]. In addition, glycol chitosan (GC) Au nanoparti-
cles (GC-AuNPs) were confirmed to show a tendency to 
accumulate in thrombus area [50]. For further investiga-
tion, fibrin-specific peptide (EP-2104R) was conjugated to 
the surface of GC-AuNPs [51]. The recurrent thrombosis 
could be diagnosed in 3 weeks with the fib-GC-AuNP-based 
microCT (mCT) imaging. Notably, the mCT imaging could 
be obtained after the fib-GC-AuNPs were intravenously 
injected for 5 min, implying fast imaging speed of this strat-
egy. This result is of great significance for clinically person-
alized thrombolytic therapy.

Photoacoustic imaging (PAI), a non-ionizing imaging 
modality, has been applied in disease diagnosis [52]. In 
2017, Cui et al. [53] prepared amphiphilic perylene-3,4,9,10-
tetracarboxylic diimide (PDI) derivatives and assembled 
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them into organic semiconducting nanoparticles (Fig. 3a). 
The diameter of the nanoparticles was about ~ 40 nm, and 
the hydrate particle size was about ~ 70 nm, which is suitable 
for thrombosis imaging. The nanoparticles showed PA con-
trast properties when irradiated at 700 nm. PAI was studied 
after injection with the cRGD–PDI nanoparticles. As shown 
in Fig. 3b-1, 2, the cRGD–PDI nanoparticles could distin-
guish an early thrombus from healthy vessels, demonstrat-
ing good imaging properties. Furthermore, the cRGD–PDI 

nanoparticles could distinguish an early thrombus from an 
old thrombus (Fig. 3b-3). The capacity to display detailed 
information about an early thrombus could help in under-
standing of the thrombolytic process. The results confirmed 
the difference in GPIIb/IIIa expression between the early and 
old thrombus (Fig. 3b-4).

However, most of the nano-agents accumulate in liver 
and other organs, and the strategies might be limited to a 
specific type of thrombosis. Many efforts have been made 
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to microenvironment-responsive contrast agents for cancer 
detection [54–56], and the effects are also appropriate for 
thrombosis diagnosis. Thrombin-activatable peptide, which 
can only be cleaved by thrombin, is a good choice for a 
thrombosis-responsive imaging system. In 2017, Lux et al. 
[57] constructed a kind of thrombin-sensitive activatable 
cell-penetrating peptide (ACPP) containing thrombin-sensi-
tive peptide fragment and cell-penetrating peptide sequence. 
The peptide was further conjugated to US molecular per-
fluorobutane-filled microbubbles (MBs). In blood clots, 
when the ACPP-MBs are cleaved by thrombin, the ACPP is 
exposed on the surface of the MBs. Thus, the MBs adhere to 
the thrombus. When treated with thrombin-rich blood clots, 

the ACPP-MBs showed enhanced US imaging, demonstrat-
ing potential for acute diagnosis.

In 2018, Kwon et  al. [58] constructed a fluorescent-
switch system using TAP and silica-coated AuNPs  (SiO2@
AuNPs). As shown in Fig. 4a-1,  SiO2@AuNPs were pre-
pared, and the surface was modified with TAP. The fluores-
cence of TAP (Cy5.5 in the system) was quenched due to 
the distance-dependent quenching effect of  SiO2@AuNPs. 
In the presence of thrombin, the TAP was cleaved, and the 
fluorescence could recover. Combined with micro-CT imag-
ing of AuNPs as the inner nanoparticle, the TAP-SiO2@
AuNPs could be used to detect thrombosis using dual-fluo-
rescence and micro-CT imaging (Fig. 4a-2). Furthermore, 
the fluorescence imaging and a micro-CT imaging could be 
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co-localized using the TAP-SiO2@AuNPs. Treated common 
carotid artery (CCA) tissue was dissected from a throm-
botic model. As shown in Fig. 4b, dark field images showed 
bright signals of the gold particles. The tissue showed a 
fluorescence signal of the released Cy5.5. The TEM image 
confirmed that the nanoparticles were successfully accumu-
lated within the thrombus tissue. In the dual-mode thrombus 
imaging system, the thrombus accumulation depended on 
the appropriate particle size of the TAP-SiO2@AuNPs.

The diagnosis of thrombosis using nano-medicines could 
be summed up in two ways. (a) In vitro diagnosis should 
rely on synthetic biomarkers, which can be collected in urine 
after the thrombosis-responsive enzyme digestion reaction 
and the following metabolism. This strategy provides fea-
sibility for home-supplied point of care. The assay requires 
three important factors: (1) The nano-carriers should accu-
mulate or be selectively enriched in blood clots, and the 
nano-medicine should have low hematotoxicity, low organ 
accumulation, and long half-life. (2) The detection biomark-
ers should be metabolized from kidney, and during these 
procedures the molecule should maintain its structure. (3) 
The detection biomarkers were modified on the nano-car-
riers through the connection of TAP or other thrombosis-
response peptides and could be cleaved quickly. Even though 
the in vitro diagnosis mis-displays the detailed information 
about thrombosis, the simultaneous synthetic biomarkers 
assay has great potential for clinical application. (b) Diag-
nosis with nanostructure-based imaging in vivo has been the 
most studied approach in preclinical and clinical applica-
tions. Imaging in vivo requires two important factors: (1) the 
nanoparticle-based contrast agents should have outstanding 
imaging properties or show imaging in the microenviron-
ment of thrombosis. (2) Surface modification should enable 
contrast agents long circulation time, thrombus targeting, 
and appropriate biosecurity. Both diagnosis strategies need 
further investigations for the precise detection of the various 
kinds of thrombosis and guiding therapy.

3  Nanostructure‑Based Drug Delivery

3.1  Artificial Nanoparticles‑Based Drug Delivery

Nano-medicine-based treatment for thrombolysis has also 
been considered. It has been applied in thrombosis and has 
gained higher therapeutic efficiency than pure drugs. Various 

drug delivery systems have been constructed to deliver 
drugs to thrombotic sites with reduced adverse effects, 
including specific targeting strategies, as well as US, mag-
netic, or light-driven strategies [13]. Meanwhile, the easy 
encapsulation of thrombolytic agents and surface targeting 
modification have made liposomes preferred candidates 
for thrombolysis [59–62]. In addition, the combined utili-
zation of external irradiation could show effective release 
in thrombotic sites, as in the case of echogenic liposomes 
(ELIP) [63]. ELIP was prepared using a lipid monolayer 
shell, encapsulated with octofluoropropane and loaded with 
rt-PA to construct an acoustically activated drug-delivery 
system [64]. When the nanocomposite was injected, the 
surface-modified targeting molecule led to enrichment in 
blood clots, and then local external US application enabled 
the release of rt-PA and incited cavitation activity.

There are many other polymer-based thrombolytic agent-
delivery systems [43, 65, 66]. Colasuonno et al. prepared a 
kind of erythrocyte-inspired discoidal nano-construct using 
PLGA and PEG, and the unique structure could prevent drug 
accumulation within the brain and reduce cerebral hemor-
rhages. tPA molecules were conjugated on the surface of 
the material through interaction with the PLGA chains. The 
unique erythrocyte-mimicking structure provided the nano-
composites long-term circulation in vivo and good blood-
clot-dissolving efficiency [67].

Aside from thrombolytic agents, gene therapeutic agents 
have also been applied for thrombolysis. For this propose, 
a recombination hirudin plasmid (pDNA) was constructed 
with the RGD and HV genes and linked by the coagulation 
factor Xa (FXa) gene [68]. Furthermore, RGDyC and PEG 
were modified on polyamide dendrimer (PAMAM). With 
the help of surface-modified RGDyC, pDNA could target 
thrombotic sites, and recombinant hirudin fusion protein 
was expressed. The RGDyC of the protein then induced a 
second targeting effect for thrombosis treatment. Magnetic 
nanoparticles could also show thrombolysis when loaded 
with thrombolytic agents [69]. Simultaneously, magnetic 
nanoparticles can respond to an external magnetic field and 
enable magnetically targeted drug delivery [70, 71].

With further researches, more organic or inorganic nano-
structures could be applied in thrombosis. The design of 
these direct transport systems should consider three fac-
tors: (1) the morphology, size, and surface modification 
of the nanostructure should help the drug accumulate in 
blood clots, and the nanostructure itself should have low 
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biotoxicity. (2) The loading capacity of the thrombolytic 
agents should match the requirements of thrombosis with 
minor nano-carriers, and the thrombolytic agents should not 
be released from the nano-carriers before the accumulation. 
(3) The loading or modification of contrast agents on the 
nano-carriers in the multifunctional nanoparticles could help 
with the understanding of the therapy procedure.

3.2  Microenvironment Responsive Drug Delivery

Accurate drug release based on the disease microenviron-
ment (DMV) has widely been studied. A DMV-responsive 
drug delivery system could reduce the drug release in 
healthy tissues [72–76]. The strategy for preferred release 
in the area of the lesion is very suitable for the delivery 
of thrombolytic agents to reduce side effects. During the 
formation of a thrombus, hydrogen peroxide  (H2O2) plays 
an essential role in the platelet activation and stimulates 
additional platelet recruitment [77, 78]. Therefore,  H2O2 is 
an important biomarker of activated platelets, and an  H2O2 
probe could separate the activated platelets from the normal 
platelets. The depletion of  H2O2 could help prevent the acti-
vation and aggregation of platelets, thus showing antithrom-
botic therapeutic efficiency.

For the application of  H2O2-responsive thrombolysis, Lee 
et al. [79] prepared a fibrin-targeted imaging and antithrom-
botic nano-medicine (FTIAN). FTIAN contains fibrin-tar-
geting lipopeptides on its surface,  H2O2-responsive borate, 
and fluorescent IR820 covalent bind polymer, as well as 
thrombolytic agents (tirofiban) as the inner nano-medicine 
(Fig. 5a). FTIAN could depolymerize after the addition of 
 H2O2, and the tirofiban was then released. At the same time, 
the reduction in  H2O2 could downregulate the tumor necro-
sis factor-alpha (TNF-α) and soluble CD40 ligand (sCD40L) 
of the activated platelets. Thus, FTIAN showed antioxidant 
and anti-inflammatory effects that were beneficial for anti-
thrombogenesis and thrombolysis. As shown in Fig. 5b, the 
injured artery of a thrombotic model showed stronger fluo-
rescence and PA signals than the untreated control group, 
and dual imaging demonstrated the thrombus-specific tar-
geting of nanoparticles. FTIAN was confirmed to suppress 
the clot formation, and the thrombolysis efficiency was far 
higher than that of the pure tirofiban (Fig. 5c). Furthermore, 
FTIAN without tirofiban also showed slight thrombolysis, 
implying that the reduction in  H2O2 could be beneficial for 

thrombolysis. In another study, the same group prepared 
fluorescent-dye (IR780) conjugated boronated maltodex-
trin (FBM). Thrombus-specific T-FBM nanoparticles were 
constructed by a self-assembly procedure [80]. As shown 
in Fig. 5d, when T-FBM was treated with  H2O2, hydroxy-
benzyl alcohol (HBA) and  CO2 were produced after several 
reactions. The HBA had anti-oxidant, anti-inflammatory, 
and anti-platelet activities, thus suppressing the thrombus 
formation. The produced  CO2 showed US signals, and the 
PA signals of IR780 were enhanced. After the administra-
tion of T-FBM nanoparticles, the  FeCl3-treated carotid arte-
rial injury could clearly be distinguished by fluorescence 
imaging and PA imaging. Simultaneously, the TNF-α and 
sCD40L of the injured artery were suppressed during this 
procedure, confirming the antithrombotic efficiency of 
T-FBM nanoparticles (Fig. 5e).

In some thrombus tissues, such as ischemic brain tissue, 
microenvironment becomes weakly acidic due to anaerobic 
glycolysis [81]. pH-triggered drug release is also a strategy 
for selective thrombolysis treatment without influencing 
normal tissues. In 2019, Li et al. prepared uPA conjugated 
oxidized dextran (Oxd) through the connection of a pH-sen-
sitive imine, and the RGD peptide was further connected 
with Oxd to provide the conjugates thrombus-targeting 
capacity. The uPA-Oxd could resist enzymatic hydrolysis 
in vivo and displayed higher activity than free uPA. Under 
the weakly acidic conditions of thrombus, the imine bond 
was hydrolyzed, and the uPA was released. The released 
uPA had enzymatic activity after these procedures, result-
ing in pH-triggered local thrombolytic therapy. Thrombin 
release is a critical event in thrombosis, and its high selec-
tivity means that it could be used as a specific trigger in a 
thrombosis-responsive delivery system. The system could 
be realized with the reasonable design of TAP-containing 
or thrombin-responsive molecules [82]. For this purpose, Li 
et al. [83] packaged tPA through the in situ polymerization 
of acrylamide (AAm), N-(3-aminopropyl) methacrylamide 
hydrochloride (APM), and TAP with acrylate end groups. 
The polymerization helped the tPA nano-medicine hide its 
physiological activator property in the blood environment. 
The tPA nano-medicine could decompose in the presence 
of thrombin, and the released tPA had fibrinolytic activity, 
thereby dissolving blood clots.

Compared with a direct delivery system, a thrombosis-
responsive delivery system could significantly reduce the 
side effects of thrombolytic agents. A responsive delivery 
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system should also contain important factors that provide 
nano-medicines high accumulation in the thrombus tissue. 
Furthermore, the responsive design should strongly associ-
ate with the thrombosis microenvironment and specifically 
release the agents in the thrombus tissue without damages 
to normal tissues. A responsive drug release strategy might 
simultaneously change the microenvironment, resulting in 
a combined therapeutic effect. Even though a thrombosis-
responsive delivery system is more complicated than a 

direct delivery system, the enhanced biosecurity provides 
more competitiveness for clinical applications.

3.3  Biological Nanostructure‑Based Drug Delivery

Other than organic or inorganic nanostructures, a number of 
biomimetic nanoparticles have been applied in drug delivery 
systems for disease treatment [84, 85]. Among them, cell 
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membrane nanoparticles obtained from natural cells have 
been widely studied due to their high biocompatibility, long 
circulation, and genetic engineering modification [86–90]. 
Platelets play a vital role in the formation of thrombosis [91, 
92], and platelet membrane (PM)-based nanoparticles have 
been prepared and applied for thrombosis treatment [93].

In 2016, Hu et al. [94] decorated the surface of PM-based 
nanoparticles with tPA to prepare nano-thrombolytics. As 
shown in Fig. 6a, the tPA was modified on the surface of the 
PM by a coupling reaction, and the inner polymeric core 
could be loaded with drugs. The PM could coat the surface 
of the polymeric core, and the prepared tPA–PM–NP was 
about ~ 127 nm (Fig. 6b). When used to treat a lung throm-
bosis model, the PM-modified nanoparticles showed excel-
lent capability to target the lungs (Fig. 6c), which could be 
beneficial in thrombolytic therapy. Furthermore, the surface 
tPA could maintain the enzymatic activity after circulation 

for a long time. tPA–PM–NP and drug-loaded nanoparti-
cles were injected into a lung thrombus model, and the fluo-
rescence intensity of the fibrinogen was obviously reduced 
(Fig. 6c). These results confirmed that PM-based nanopar-
ticles could home in on the thrombus site and showed a 
remarkable thrombolysis effect. In another study, Xu et al. 
[95] modified rtPA on the surface of PM through connecting 
with a TAP-linked cell-penetrating peptide (TAT). As shown 
in Fig. 6d, a drug could simultaneously be encapsulated in 
the multi-functional nanoparticles (tP–NP–rtPA) for a com-
bination therapy to treat ischemic stroke. The PM and rtPA 
of the tP–NP–rtPA could accumulate in the thrombus site 
(Fig. 6e), and the bloodstream of the damaged carotid artery 
could recover (Fig. 6f). These results confirmed the targeted 
thrombolysis capability of multi-functional nanoparticles.

Furthermore, when the nanoparticles were used to treat 
a thrombus, rtPA was released from the nanoparticles 
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synchronously with the exposure of TAT, and further 
drug delivery was realized. Yang et al. [96] loaded uPA 
and gold nanorods (AuNRs) in a PM nanoparticle. Unlike 
previous surface modification strategies, the uPA was 
loaded in the platelet membrane in this system, which 
could reduce the potential for hemorrhage. When the nan-
oparticles targeted the thrombosis, the inner uPA could 
be released from the nanoparticles in a sustained man-
ner, resulting in an obvious thrombus decrease. Proteins 
and viruses have also been applied in biomimetic-based 
delivery systems [97, 98]. In 2017, Pitek et al. [99] loaded 
streptokinase (STK, a kind of thrombolytic) on the elon-
gated tobacco mosaic virus (TMV). Due to its unique 
elongated geometry, the TMV-based platform had a high 
margination rate towards the vessel walls. As a result, 
the STK-modified TMV could gather in thrombotic sites 
under blood flow, and the STK showed effective activity.

Aside from chemical surface modification strategy, 
genetic engineering methods have also been an important 
modification strategy for delivery systems. One example 
is ferritin, which is well-known as a protein nanocage 
made of 24 subunits. Each subunit could be engineered 
for modification on the C-terminal or N-terminal [100]. 
Ferritin can be applied for drug loading by disassem-
bly and reassembly procedures through changes of pH 
[101–103]. In 2018, Seo et al. [104] engineered a subunit 
of short ferritin with blood-clot-targeting peptides (CLT) 
on its N-terminal and the thrombolytic microplasmin 
(μPg) on its C-terminal. The CLT on the ferritin could 
target fibrin–fibronectin complexes, providing a throm-
bus-targeting property to the engineered ferritin. The μPg 
can be pre-activated by urokinase on active microplasmin 
(μPn). The ferritin can protect the μPn from the enzymatic 
action of α2-antiplasmin. Given the advantages of dou-
ble functional engineering, the constructed ferritin can 
selectively target blood clots and shows thrombolytic/
clot-busting activity.

Compared with organic or inorganic nanostructure-
based delivery systems, the biomimetic strategy might 
show more biocompatibility for in vivo thrombolysis. 
Genetically engineered nanocages are uniform in size, 
and their thrombolytic-carrying efficiency is control-
lable. However, the biomimetic nanoparticles also need 
further investigations to meet the requirements of clinical 
application.

4  Treatments with External Irradiation

Aside from treatments with thrombolytics, treatments 
based on external irradiation with the response of mechan-
ical stress, hyperthermia, and ROS have also been stud-
ied [105]. With the help of imaging in vivo, irradiation 
in only thrombotic sites could reduce damages to normal 
tissues. For example, US imaging has been extensively 
applied in the clinical diagnosis of thrombosis due to its 
safety, real-time image monitoring, deeper penetration, 
and other advantages [106]. Microbubble (MB)-enhanced 
US can show sono-thrombolysis efficacy. Combined with 
the loading of thrombolytics, an US-induced fixed-point 
drug release system can be achieved [107, 108]. In addi-
tion, low-intensity focused US (LIFU) only reversibly 
modulates region-specific tissues and can meet the require-
ments of the irradiation area for thrombosis treatment 
[109]. With the use of perfluorohexane (PFH)-containing 
nanoparticles, LIFU could induce a liquid-to-gas phase 
transition (PT) procedure, and the volume expansion and 
explosion of the nanoparticles could damage the surround-
ing cells or tissues.

In 2019, Zhong et al. [110] enclosed PFH droplets in 
PLGA nanoparticles, and  Fe3O4 nanoparticles were loaded 
on the surfaces of the nanoparticles (Fig. 7a). With further 
modification of targeting CREKA peptide, a multi-func-
tional PT thrombolysis nano-medicine was constructed. 
When the nano-medicine was administered, the nanopar-
ticles could accumulate at thrombosis, and then the LIFU 
irradiation was applied. As a result, the blood clots under-
went hemolysis of the blood cells, fibrin degradation, and 
self-deformation. Nanoparticles without PFH, as a control, 
were also treated with LIFU irradiation (NPT). The LIFU-
responsive PT thrombolysis strategy could reduce the size 
of the blood clots (Fig. 7b, c). The multi-functional nano-
particles also had MR, PA, and US contrast properties, 
thus enabling multimodal imaging in vivo to diagnose the 
thrombosis and monitor the PT thrombolysis efficiency. 
Furthermore, this nonpharmaceutical strategy had lower 
hepatotoxicity and risk of bleeding.

Photo-therapy (photothermal therapy, PTT; photody-
namic therapy, PDT) has also been developed as a non-
invasive strategy for the treatment of multiple diseases 
[111–114]. Photo-therapy agents can convert laser radia-
tion into a local temperature increase or reactive oxygen 
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species (ROS), leading to hyperthermic injury of the 
treated cells [115]. ROS or hyperthermia can also destroy 
red cells, platelets, or fibrin, meaning that photo-therapy 
could be applied for blood clot lysis [116]. In 2019, Zhang 
et  al. [117] prepared mesoporous carbon nanospheres 
(PMCSs) from a metal–organic-framework precursor, 
which showed both PTT and PDT properties due to their 
porphyrin-like metal centers. Then, RGD was modified 
on the surface of the MCS to target a thrombus (Fig. 8a). 
When RGD-PMCS was intravenously injected into a 

mouse model of thrombus, it accumulated in the thrombo-
sis, and the temperature of the thrombotic sites was notice-
ably increased under local irradiation with an 808-nm laser 
(Fig. 8b). After the PTT/PDT combined treatment, platelet 
factor 3 (PF3) was damaged, and red cells and the fibrin 
skeleton of the blood clots underwent apoptosis and bro-
ken, respectively. Thus, the PTT/PDT combined throm-
bolytic therapy showed an outstanding therapeutic effect, 
and secondary embolism was prevented thanks to the full 
breakage of the blood clots.
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An external laser could be applied to control drug 
delivery. For an NIR-responsive thrombolytic release 
system, Wang et al. [118] prepared gold@mesoporous 
silica core–shell nanospheres (Au@MSNs), and uPA 
was co-delivered with 1-tetradecanol (Tet) into the Au@
MSNs. The liquid form of Tet was transformed to a solid 
form when the temperature decreased. Thus, the uPA was 
capped into the pores of Au@MSNs, providing steady 
loading. The constructed loading system had stability in 
the cell culture medium, even after 7 days. When the nano-
composite was gathered in the thrombotic site, NIR laser 
irradiation was performed. The inner gold nanoparticles 

showed a PTT effect, and once it rose to 39 °C the Tet was 
reverted to a liquid form, inducing the fast release of uPA.

Light has also been reported to drive some Janus micro-/
nano-motors by generating kinetic energy, which could ben-
efit tissue-selective drug delivery [119–123]. Blood clots are 
dense tissues with various cells, fibrin, and other ingredients, 
so it is of great significance for thrombolysis to penetrate 
into the interior of blood clots. In 2018, Shao et al. [119] 
prepared a kind of Janus polymeric motor (JPM), in which 
the Au layer was partially coated onto the surface of the 
capsule. JPMs were further modified with erythrocyte mem-
branes (EM-JPMs) for biomedical applications (Fig. 9a). 
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Under external NIR laser irradiation, the EM-JPMs showed 
obvious light-induced movement, and the trajectories were 
extended, which could benefit the collision with thrombus 
(Fig. 9b). The EM-JPMs could be propelled by the self-ther-
mophoresis effect during NIR laser irradiation.

Human fibrinogen has been used as a thrombus mode 
to study the thrombolysis efficiency of engineered micro-
motors. When performing NIR laser irradiation, the micro-
motors could collide more often with the thrombus, and 
the aroused photothermal ablation could treat thrombus 
(Fig. 9c). A magnetically powered micro-motor was also 
designed, which acted as a carrier of thrombolytics [124, 
125]. With irradiation by external magnetic fields, the 
micro-motors could penetrate the blood clots and deliver 
thrombolytics. In 2018, Hu et al. [126] prepared porous 
 Fe3O4-microrods (MRs) and loaded them with the tPA. As 
shown in Fig. 9d, the tPA-MRs could rotate under an exter-
nal rotating magnetic field, inducing mechanical lysis. Com-
bined with the function of loaded tPA, tPA–MRs could show 
a thrombolysis effect. When used to treat an ischemic stroke 
model, an external magnet was applied, and the tPA–MRs 
could target blood clots after their injection (Fig. 9e). The 
clot lysis efficiency was significantly enhanced after treated 
with an external rotating magnetic field (Fig. 9f). However, 
the large size of the irradiation-derived micro-motor limited 
the applications in vivo, and further preparation of the nano-
motors is necessary for this strategy.

5  Conclusions and Perspectives

Nowadays, more than 200 nano-medicine-based products 
have been approved for clinical treatment or are undergo-
ing clinical investigations. Among nano-medicine methods, 
liposomes are the most widely studied due to their good 
biocompatibility and biodegradability, and many liposome-
based nano-medicines have been approved by FDA (e.g., 
Doxil, Ambisome, DepotDur, and DaunoXome). The pur-
suit of delivery strategies with higher efficiency and poten-
tial clinical applications is still on the way. Combined with 
in vivo imaging systems, drug delivery systems, and irradia-
tion responsive systems, the advanced thrombosis systems 
should contain three factors:

Firstly, the accumulation of nano-medicines at throm-
botic sites is a prerequisite for clinical treatment. Unlike 
the case of nano-medicines widely applied for tumors or 

inflammation, thrombotic sites are distributed in the blood 
flow, and the blood clots are very small. For this propose, it 
is of great importance to modify nano-medicines with the 
targeting antibodies or peptides, such as single-chain anti-
body (scFv), cyclic Arg-Gly-Asp (cRGD) peptide. However, 
phagocytosis of nano-medicines by macrophages could limit 
their blood circulation time. Thus, reasonable modifications 
to extend half-time are useful for drug accumulation, such as 
cell membrane biomimetic methods. Meanwhile, the mor-
phology, size, and surface hydrophilic modulation also influ-
ence the biodistribution of nano-medicines.

Secondly, nano-medicines could gather in many tissues/
organs in the body, and unwanted tissue damages must be 
considered. Thrombolytics could induce hemorrhage in the 
undesirable tissues or sites and even induce other cardio-
vascular diseases or organ damages. The delivery systems 
that responding to the thrombus microenvironment or photo/
sound/magnetic irradiation could only release their car-
goes in thrombotic sites, and only a minor amount of drug 
was leaked in normal tissues. A responsive design should 
strongly associate with the thrombosis microenvironment, 
and the microenvironment might simultaneously be changed, 
resulting in a combined therapeutic effect. The direct cell 
apoptosis induced by photo/sound/magnetic therapy could 
also benefit for the thrombosis treatment.

Thirdly, real-time imaging not only differentiates blood 
clots from other normal tissues, but also provides detailed 
information about thrombus. Thus, imaging-guided treat-
ment is a key factor for personalized treatment.

With the development of nano-medicines, many throm-
bosis treatments have been reported, and some of them have 
obtained good thrombolysis effects with reduced biotoxic-
ity. Up to now, most of clinical thrombolysis trials have 
been carried out on sonothrombolysis, showing obviously 
improvements in drug efficacy. However, there are some 
reasons responsible for the limitations of nano-medicines 
in clinical translation: (1) the advanced thrombosis systems 
often involve complex synthesis and purifications. (2) The 
therapeutic effect of nano-medicines may be inconsistent 
between animal models of thrombosis and human patients; 
(3) nano-medicines could gather in various organs, leading 
to unwanted side effects. The elimination of nano-medicines 
for thrombosis treatment in other healthy organs is encour-
aged to achieve the future success, and it would be even bet-
ter to develop a nanosystem that can be cleared through kid-
ney after the treatment. Considering the promising potential 
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of nano-medicines for thrombosis treatment, much more 
efforts should be made to shorten the extensive procedures 
involved basical and clinical research. Successful transla-
tion of nano-medicines to the clinical thrombosis treatment 
will enable novel medical diagnostics and therapy to manage 
thrombosis for personalized medicine.
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