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HIGHLIGHTS

• A narrow bandgap electron donor–acceptor (D–A) semiconducting polymer nanoparticle (SPN) coated with red blood cell membrane 
(RBCM) for photoacoustic imaging and photothermal therapy.

• The D–A structure endows SPN with excellent near‑infrared absorbance, high photothermal conversion ability, and good photothermal 
stability.

• The RBCM endows SPN with good biocompatibility, prolonged blood circulation, and improved tumor accumulation, while the small 
size structure endows SPN with deep tumor penetration and rapid clearance from body.

ABSTRACT Semiconducting conjugated 
polymer nanoparticles (SPNs) represent an 
emerging class of phototheranostic materi‑
als with great promise for cancer treatment. 
In this report, low‑bandgap electron donor–
acceptor (D–A)‑conjugated SPNs with sur‑
face cloaked by red blood cell membrane 
(RBCM) are developed for highly effective 
photoacoustic imaging and photothermal 
therapy. The resulting RBCM‑coated SPN 
(SPN@RBCM) displays remarkable near‑
infrared light absorption and good photosta‑
bility, as well as high photothermal conver‑
sion efficiency for photoacoustic imaging and 
photothermal therapy. Particularly, due to the 
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small size (< 5 nm), SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable 
toxicity. The RBCM endows the SPNs with prolonged systematic circulation time, less reticuloendothelial system uptake and reduced 
immune‑recognition, hence improving tumor accumulation after intravenous injection, which provides strong photoacoustic signals and 
exerts excellent photothermal therapeutic effects. Thus, this work provides a valuable paradigm for safe and highly efficient tumor pho‑
toacoustic imaging and photothermal therapy for further clinical translation.

KEYWORDS Semiconducting conjugated polymer nanoparticles; Red blood cell membrane camouflage; Deep tumor penetration; 
Photoacoustic imaging; Photothermal therapy

1 Introduction

Theranostic nanoplatforms simultaneously bearing diag‑
nostic and therapeutic functions through a single entity are 
crucial for detecting diseases at an early stage and realiz‑
ing image‑guided therapies, which is favored to improve 
the survival rate of cancer patients [1, 2]. Recently, pho‑
totheranostic nanoagents utilizing light to collect diagnos‑
tic information and achieve therapeutic effects have gained 
intensive attention due to their noninvasiveness, high effi‑
ciency, and convenient maneuverability in a spatial and tem‑
poral manner [3, 4]. Among the numerous phototheranostic 
strategies, photoacoustic imaging (PAI) and photothermal 
therapy (PTT) can seamlessly and synergistically match each 
other, because the efficacies of both PAI and PTT are mainly 
dependent on photothermal conversion ability, considering 
that PAI uses photothermally converted acoustic waves to 
realize ultrasound signal detection [5–8]. PAI can overcome 
the traditional optical penetration limitations (e.g., fluores‑
cence imaging) since it detects phonons rather than photons 
under light excitation, providing superior spatial resolution, 
high contrast, and deep tissue penetration [7, 9–11]. To date, 
various optical agents have been developed for PAI/PTT 
theranostics, including small molecule dyes, metallic nano‑
particles, and carbon nanomaterials [12–16]. Nevertheless, 
small molecule dyes usually suffer from photobleaching, 
while metallic nanoparticles encounter severe biotoxicity 
and carbon nanomaterials have broad PAI spectra without a 
specific wavelength and a low extinction coefficient for PAI 
and PTT [17, 18]. Semiconducting polymer nanoparticles 
(SPNs) characterized by π–π electron delocalized backbones 
and easy exciton diffusion along the backbone represent a 
new PAI/PTT agent with good photostability, high extinc‑
tion coefficient, and excellent photothermal conversion 
efficiency [1, 5]. As SPNs are fabricated from biologically 

inert organic compounds, they can inherently avoid of heavy 
metal ion‑induced toxicity to tissues and thus possess good 
biocompatibility [19]. However, narrowing their absorption 
bandgap within the near‑infrared light (NIR) window along 
with a high extinction coefficient is challenging but essen‑
tially needed, which may facilitate efficient NIR photother‑
mal conversion for PAI and PTT [20]. In addition, similar 
to other nano‑scaled biomaterials, artificial phototheranostic 
nanoagents generally encounter several obstacles in clinical 
translation, including easy recognition by the immune sys‑
tem, insufficient accumulation in the tumor site, and safety 
concerns regarding physiological interactions and metabo‑
lism, which compromise their potential for clinical practice 
[21, 22].

Surface decoration of phototheranostic nanoagents 
with synthetic polymers or targeting ligands is an efficient 
approach to mitigate these issues, but the complicated pro‑
cess as well as the possibility of activating the immune 
system might further hinder their applications [23, 24]. 
Biological membranes have been exploited to camouflage 
nanoparticles for optimized cancer theranostics though 
reducing side effects, prolonging circulation time, and 
improving targeting ability [25–28]. Many kinds of cell 
membranes have been utilized to construct biomimetic nano‑
particles. Such a strategy has become extremely attractive 
as the surface biomolecules inherited from the sourced cell 
membranes being capable of rendering biomimetic particles 
with special biological functions. For example, erythrocyte 
membrane coating helps various nanoparticles suppress 
immune attack due to the presence of “self‑markers” (e.g., 
the CD47 protein). Indeed, red blood cell membranes have 
been used to cloak poly(lactic‑co‑glycolic acid) [25], mag‑
netic [29], perfluorocarbon [30], gold [31], metal organic 
framework (MOF) [32], and drug‑based crystal [33] nano‑
particles for cancer treatment. In addition, this top‑down 
method extensively simplifies the procedure for the surface 
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modification procedure of nanoparticles [34]. However, rel‑
evant reports adopting this approach for constructing bio‑
mimetic SPN‑based phototheranostic agents are still very 
rare but highly desirable. Very recently, Pu and co‑workers 
introduced a biomimetic SPN‑based nanoparticle (AF‑SPN) 
coated with the cell membranes of activated fibroblasts for 
the enhanced cancer phototheranostics [35].

Although improved theranostic efficacy has been achieved 
by a cell membrane camouflaging strategy, other bottlenecks 
still exist that cause the poor performance of nanoparticles 
in solid tumor treatment. It has been realized that nano‑
based therapeutics mainly deliver particles to the cells on 
the tumor periphery, owing to the dense interstitial struc‑
ture of the tumor that impedes the penetration of external 
nanoparticles to reach a therapeutic dose [36–38]. Moreover, 
to avoid potential long‑term toxicity, the theranostic agents 
should be biodegradable or clearable within an appropri‑
ate period for clinical applications. In particular, the size 
of nanoparticle has a great influence on the toxicity and 
clearance characteristics [39–41]. For example, small‑sized 
nanoparticles (less than 30 nm) have been proven to exhibit 
deep tumor penetration [42–44]. Meanwhile, it is also well 
known that ultrasmall‑sized nanoparticles possess renal 
clearance characteristics, such as gold nanoparticles, black 
phosphorus quantum dots, porphyrin‑PEG polymers, and 
metal/covalent‑organic framework nanodots [39, 41, 45–47]. 
Thus, elaborately designed nanoparticles with a reasonable 
size and appropriate surface decoration can balance the 
demands between body clearance and tumor accumulation.

Herein, we synthesized a novel narrow bandgap 
donor–acceptor (D–A) conjugated polymer with thiophene‑
fused benzodifurandione‑based oligo(p‑phenylene vinylene) 
as the acceptor segment and thieno[3,2‑b]thiophen‑2‑yl)
benzo[1,2‑b:4,5‑b′]dithiophene as the donor segment, to 
serve as building blocks to construct SPNs for cancer pho‑
totheranostics (Scheme 1). These SPNs were further cam‑
ouflaged with RBCM, namely SPN@RBCM, to reduce the 
rapid clearance by phagocytic cells and prolong the circula‑
tion lifetime. The D–A backbone structure endowed SPN@
RBCM with excellent NIR absorption and photothermal 
conversion ability, which showed excellent PAI and PTT 
efficacy both in vitro and in vivo. In addition, owing to its 
ultrasmall size, SPN@RBCM had significantly deep tumor 
penetration and could be cleared from the body without 

toxicity. Compared with previously reported semiconduct‑
ing polymer nanoparticles, the most distinctive feature of 
our SPN@RBCM is the combination of a small‑sized struc‑
ture and RBCM camouflage, which reconciles the dilemma 
between prolonged blood circulation for tumor accumulation 
and rapid clearance from the body to reduce long‑term toxic‑
ity. Thus, this work presents a promising phototheranostic 
agent for clinical translation.

2  Experimental Section

2.1  Materials

Pd2(dba)3 and P(tolyl)3 were purchased from Sigma‑Aldrich 
(USA). TTBDT (4,8‑Bis(5‑(2‑ethylhexy)thieno[3,2‑b]
thiophen‑2‑yl)benzo[1,2‑b:4,5‑b]dithiophene‑2.6‑diyl)
bis(trimethylstannane)) was purchased from Suna Tech 
Inc. (Suzhou, China). Tetrahydrofuran, methanol, dichlo‑
romethane and toluene were purchased from Sinopharm 
Chemical Reagent Co. Ltd. (China). 1,2‑Dipalmitoyl‑sn‑
glycero‑3‑phosphoethanolamine‑N‑[methoxy[poly(ethylene 
glycol)]‑2000] (DSPE‑mPEG2000) was purchased from 
A.V.T Pharmaceutical (Shanghai, China). DiO and DiR were 
purchased from Us Everbright Inc. (Suzhou, China). APC‑
affinity anti‑CD11b‑antibody was purchased from Thermo 
Fisher Scientific (USA). Hoechst 33342 was purchased from 
Sigma‑Aldrich (USA). Cell Counting Kit‑8 (CCK‑8) and the 
Annexin V‑FITC/PI apoptosis detection kit were purchased 
from Dojindo Laboratories (Kumamoto, Japan). Calcein AM 
and PI were purchased from J&K Scientific Ltd (Beijing, 
China). Ultrapure water was prepared by a Milli‑Q Gradi‑
ent System (18.2 M Ω resistivity, Millipore Corporation, 
Bedford, MA, USA).

2.2  Cell Culture

SMMC‑7721 cells (human hepatocellular carcinoma), QSG‑
7701 cells (human normal liver cells), 4T1 cells (murine 
breast cancer cells) and NIH‑3T3 cells (murine embryonic 
fibroblasts cells) were all obtained from ATCC (Manassas, 
VA). These cells were cultured in DMEM containing 10% 
fetal bovine serum (FBS) in a 37 °C humidified incubator 
supplied with 5%  CO2.
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2.3  Preparation of SPN@RBCM

2.3.1  Preparation of SPN

The synthetic processes and characterization of the SPs were 
exhibited in the supporting information (Fig. S1). Afterward, 
1.0 mg of SP and 5.0 mg of DSPE‑mPEG2000 were dissolved 
in 2 mL of THF, followed by quick addition into 20 mL of 
water under sonication. Afterward, the THF was removed by 
stirring for over 10 h at room temperature. The mixed solution 
was ultrafiltered at 4500 rpm for 30 min and then washed three 
times with pure water to remove excess DSPE‑mPEG2000. 
Finally, the products were collected and stored at 4 °C.

2.3.2  Preparation of RBC Membrane

Whole blood was harvested from healthy BALB/c mice. 
Then, the red blood cells (RBCs) were separated by centrifu‑
gation at 1000 g for 10 min at 4 °C and washed 3 times with 
ice‑cold PBS (pH = 7.4) to obtain the red blood cells. Red 

blood cells were ruptured by suspension in 0.25 mM PBS 
solution for 3 h. Afterward, the solution was centrifuged at 
16,000 g for 30 min at 4 °C. The precipitate was repeatedly 
washed with ice‑cold PBS and centrifuged until the RBCM 
turned colorless. Finally, the precipitate (RBCM) was quan‑
tified and stored at − 80 °C for future use.

2.3.3  Preparation of SPN@RBCM

SPN@RBCM was synthesized by an extrusion method. 
First, RBC membrane (0.2 mL, 1 mg mL−1) and SPN (1 mL, 
1 mg mL−1) were mixed. Then, the mixture was extruded 
using an Avanti mini‑syringe (Avanti, USA) through 400 nm 
and 200 nm polycarbonate porous membranes 15 times to 
obtain SPN@RBCM.

2.4  Characterization of SPN@RBCM

SPN and SPN@RBCM were characterized by dynamic light 
scattering (DLS, Malvern, UK), UV–Vis‑NIR spectrometry 
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Scheme 1  Schematic illustration for the preparation of SPN@RBCM nanoparticles and their applications in photoacoustic imaging (PAI) and 
photothermal therapy (PTT)
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(Cary5000, Agilent), transmission electron microscopy 
(TEM, JEOL, Japan).

For the characterization of membrane proteins, SDS‑
PAGE (polyacrylamide gel electrophoresis) was used. The 
extracted membrane proteins of RBC vesicles and SPN@
RBCM nanoparticles were detected by SDS‑PAGE in a BIO‑
RAD electrophoresis system. Next, the resulting polyacryla‑
mide gel was stained by Coomassie blue solution for 3–4 h 
to visualize the proteins. Finally, the polyacrylamide gel was 
washed 3–4 times with pure water before being recorded by 
an imaging system (BIO‑RAD, USA).

2.5  In Vitro PA Imaging

In order to test the PA imaging ability of SPN@RBCM, 
1 mL of SPN@RBCM aqueous solution at different con‑
centrations (10, 20, 30, 40, 50, and 60 μg mL−1) was tested 
with a PA instrument (Vevo3100 LAZR system, Canada).

2.6  Photothermal Performance of SPN@RBCM

To study the temperature elevation of SPN@RBCM, 1 mL 
of SPN@RBCM aqueous solutions at different concentra‑
tions (10, 20, 40, and 60 μg mL−1) was exposed to laser 
irradiation (808 nm, 0.8 W cm−2) for 1000 s. At the same 
time, pure water (termed 0 μg mL−1 of SPN@RBCM) was 
exposed to the same conditions as the control sample. To 
further investigate the photothermal stability, 1 mL of SPN@
RBCM (20 μg mL−1) in water was exposed to laser irradia‑
tion (808 nm, 0.8 W cm−2) for 1000 s and then the laser 
was turned off for 1000 s. This procedure was repeated four 
rounds. Additionally, 1 mL of ICG solution with the same 
treatment was set as the control group. The temperature of 
the solution was monitored by IR thermal camera (Ti25 
Fluke Co, USA), as well as a thermocouple microprobe 
(ɸ = 0.5 mm) (STPC‑510P, China) that was submerged in 
the solution. In addition, we compared the absorbance of 
SPN@RBCM and ICG before and after laser irradiation. 
Specifically, 1 mL of each SPN@RBCM and ICG aque‑
ous solutions was exposed to laser irradiation (808 nm, 
0.8 W cm−2) for different lengths of time (2.5, 5, 10, and 
15 min), and the absorbance of the SPN@RBCM and ICG 
aqueous solutions was measured with a UV–Vis‑NIR spec‑
trometer (Cary5000, Agilent).

2.7  Photothermal Conversion Efficiency of SPN@
RBCM

The photothermal conversion efficiency (η) was calculated 
by Eqs. 1–3:

where h is the heat transfer coefficient, A is the surface area 
of the container, Tmax is the equilibrium temperature, TSurr 
is the surrounding temperature, ΔTmax = Tmax − TSurr, I is the 
incident laser power (0.8 W cm−2), and Aλ is the absorb‑
ance of 20 μg mL−1 SPN@RBCM at 808 nm. Qs is the heat 
associated with the light absorbance of the solvent, which 
is measured independently to be 25.2 mW by using pure 
water. The value of hA is derived from Eq. 2. τs is the time 
constant of the sample system, mD and CD are the mass and 
heat capacity of pure water (mD = 1 g, CD = 4.2 J g−1). Com‑
bining Eq. 2 with Eq. 3, τs could be determined by applying 
the linear time data from the cooling period versus − lnθ.

2.8  In Vitro Cytotoxicity Assay of SPN and SPN@
RBCM

The cytotoxicity of SPN and SPN@RBCM was evaluated 
in cancer cell lines (SMMC‑7721 cells and 4T1 cells) and 
normal cell lines (QSG‑7701 cells and NIH‑3T3 cells) by 
CCK‑8 assay. The cells were seeded in a 96‑well plate at a 
density of 1.5 × 104 cells per well and incubated for 12 h. 
The original medium was removed, and then fresh medium 

(1)� =

(
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)

I
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containing different concentrations of SPN or SPN@RBCM 
(10, 20, 30, 40, 50, or 60 μg mL−1) was added. Meanwhile, 
untreated cells were used as a control. After 24 h of incu‑
bation, the medium containing different concentrations of 
SPN or SPN@RBCM was removed, and the cells were 
washed twice with PBS. Then, 100 μL fresh medium with 
10% CCK‑8 solution was added. After 1 h of incubation at 
37 °C, the absorbance at 450 nm of each well was measured 
with a microplate reader (Molecular Devices, USA). Cell 
viability was calculated as follows:

where A1 is the absorbance value of the cells treated with 
different concentrations of SPN@RBCM, A0 is the absorb‑
ance value of cells without treatment, and the Ablank is the 
absorbance value of the CCK‑8 medium solution itself at 
450 nm. All samples were performed in four parallel repeats.

2.9  In Vitro Photothermal Therapy

To investigate the PTT efficiency of SPN@RBCM, SMMC‑
7721 cells or 4T1 cells were seeded in a 96‑well plate at a 
density of 1.5 × 104 and cultivated for 12 h. The original 
medium was replaced by fresh medium containing different 
concentrations of SPN@RBCM (10, 20, or 30 μg mL−1) and 
further incubated for another 8 h. Afterward, the cells were 
irradiated with an 808 nm laser (0.8 W cm−2, 10 min) and 
cultivated for 24 h at 37 °C with 5%  CO2. Finally, the cells 
were washed 3 times with PBS and incubated with fresh 
medium containing 10% CCK‑8 solution to measure the cell 
viability according to the above method.

Live and dead cell assay and apoptosis assay were also 
utilized to prove the PTT efficiency. SMMC‑7721 cells 
were seeded at a density of 1.5 × 104 in a 96‑well plate and 
cultivated for 12 h. Next, 60 μg mL−1 SPN@RBCM was 
added with fresh medium and incubated for another 8 h. 
Afterward, the cells were irradiated with an 808 nm laser 
(0.8 W cm−2, 10 min). Subsequently, the treated cells were 
stained with calcein AM and PI and imaged under a fluores‑
cence microscope (Zeiss Axio Vert. A1, Germany). For the 
apoptosis assay, the cells were treated as described above 
and then stained with Annexin V‑FITC/PI solution. Finally, 
the treated cells were detected by flow cytometry (BD FAC‑
SAria TM III, USA).

Cell viability (%) =
(

A1 − Ablank

)

∕
(

A0 − Ablank

)

× 100%

2.10  In Vivo PA Imaging of SPN@RBCM

The BALB/c mice were obtained from China Wushi, Inc. 
(Shanghai, China). The animal experiments were strictly 
carried out following the “National Animal Management 
Regulations of China” and approved by the Animal Eth‑
ics Committee of the Mengchao Hepatobiliary Hospital 
of Fujian Medical University. Tumor‑bearing mice were 
established by subcutaneously injection of 4T1 cells at a 
density of 1 × 106 per mouse. Afterward, when the tumor 
size reached 50  mm3, SPN or SPN@RBCM (100  µL, 
5 mg mL−1) was injected into the 4T1 tumor‑bearing mice 
through the tail vein, and the in vivo PA imaging was moni‑
tored by a PA instrument (Vevo3100 LAZR system, Canada) 
with a laser wavelength of 808 nm 24 and 48 h postinjection.

2.11  Biodistribution of SPN@RBCM

For the in vivo biodistribution investigation, 4T1 tumor‑bear‑
ing mice were i.v. injected with DiR‑labeled SPN or SPN@
RBCM (100 μL, 5 mg mL−1), and then an IVIS imaging sys‑
tem was used to monitor the fluorescent signals at the tumor 
site 0, 2, 4, 6, 8, 10, 24, and 48 h postinjection. Afterward, 
the mice were killed, and the main organs were resected and 
imaged by the IVIS imaging system. In order to study the 
penetration capacity of SPN@RBCM in vivo, the tumor tis‑
sue was further cut into three pieces and imaged by the IVIS 
imaging system.

2.12  Blood Circulation

The DiR‑labeled SPN@RBCM nanoparticles were i.v. injected 
into healthy SD rats at a dose of 5 mg kg−1. SPN without 
RBCM coating were used as the control. At different time 
points of injection (2, 6, 12, 24, and 48 h), 20 μL of blood was 
collected from the mouse tail and centrifuged immediately 
at 3000 rpm for 10 min to obtain serum, and the mice were 
imaged by an IVIS imaging system to detect the fluorescence 
intensity.

2.13  In Vivo Uptake by Macrophages

The DiO‑labeled SPN@RBCM or SPN nanoparticles were 
i.v. injected into BALB/c mice with an equal SPN‑based dose 
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of 5 mg kg−1. Then, 500 of μL blood was withdrawn from the 
mice 4 h postinjection. Afterward, the blood samples were 
diluted twofold with ice‑cold PBS, and Ficoll‑Paque pre‑
mium sterile solution was utilized to obtain monocytes. Sub‑
sequently, the monocytes were cultivated with APC‑affinity 
anti‑CD11b antibody (3:500) for 30 min at room temperature. 
Then, the stained cells were washed with PBS and centri‑
fuged, of which this procedure was repeated 3 times (800 g, 
5 min), followed by suspension in PBS. Finally, the sample 
was analyzed by flow cytometry analysis (BD FACSAria TM 
III, USA).

2.14  In Vivo Infrared Thermal Imaging

4T1 tumor‑bearing mice received SPN@RBCM administra‑
tion through tail vein injection at a dose of 5 mg kg−1. After 
24 h, the tumor sites of the mice were irradiated by an 808 nm 
laser (0.5 W cm−2) for 10 min, and the photothermal perfor‑
mance of SPN@RBCM in the tumor site was observed by an 
IR thermal camera (Ti25 Fluke Co, USA).

2.15  In Vivo Antitumor Effect

To study the photothermal therapy efficiency, 4T1 tumor‑
bearing mice were randomly divided into 5 groups (n = 5, 
each group), and SPN or SPN@RBCM (100 μL, 5 mg mL−1) 
was injected into each mouse through the tail vein. In detail, 
the groups were divided as follows: (1) treatment with 
PBS; (2) treatment with PBS and laser irradiation (808 nm, 
0.5 W cm−2) for 10 min; (3) treatment with SPN@RBCM 
nanoparticles; (4) treatment with SPN and laser irradiation 
(808 nm, 0.5 W cm−2) for 10 min; and (5) treatment with 
SPN@RBCM and laser irradiation (808 nm, 0.5 W cm2) for 
10 min. Laser irradiation was implemented 24 h after injec‑
tion. PTT efficacy was evaluated by measuring the body 
weights and tumor volumes of each group every 2 days. The 
tumor volume was calculated by the formula: Tumor vol‑
ume = length × width2/2. The length and width were measured 
by Vernier caliper.

To examine the histological changes in the tumors, one 
tumor‑bearing mouse in each group was killed 2 days after 
treatment. The tumor was collected and fixed with formalin 
solution, embedded in paraffin and sliced for histological 
examination (H&E, Ki67 and TUNEL staining).

In order to assess the long‑term biosafety of SPN@
RBCM, the treated mice were killed and the major organs 
were harvested (heart, liver, spleen, lung, and kidney), 
and then fixed with formalin solution for H&E exami‑
nation. We also evaluated the toxicity of SPN@RBCM 
by routine blood and serum biochemistry analyses. After 
treatment for different lengths of time (0, 1, and 7 days), 
the blood of the SD rats was collected in EDTA2K spray‑
coated tubes and analyzed using an automated hematol‑
ogy analyzer.

2.16  Statistical Analysis

The results of the experiments are reported as the 
mean ± standard deviation. The different experimental data 
of each group were analyzed by ANOVA with post hoc tests 
using Prism 6 software (GraphPad). Different significance 
levels of the data were considered at *p < 0.05, **p < 0.01, 
***p < 0.001.

3  Results and Discussion

3.1  Preparation and Characterization of SPN 
and SPN@RBCM

The D–A‑conjugated semiconducting polymer (SP) was syn‑
thesized though Stille coupling polymerization from thio‑
phene‑fused benzodifurandione‑based oligo(p‑phenylene 
vinylene) (TBDOPV, as electron acceptor) and thieno[3,2‑
b]thiophen‑2‑yl)benzo[1,2‑b:4,5‑b′]dithiophene (TTBDT, 
as electron donor), similar to previous literature [20]. The 
detailed synthetic route and characterization are displayed 
in Figs. S1–S6. Hydrophobic SP was then assembled with 
DSPE‑mPEG2000 to construct hydrophilic nanoparti‑
cle (SPN) through nanoprecipitation method. To coat the 
RBCM onto the surface of SPN, freshly prepared RBCM‑
derived vesicles were coextruded with SPNs through 400 
and 200 nm polycarbonate porous membranes (Scheme 1), 
respectively.

Next, the physicochemical properties of SP, SPN, and 
SPN@RBCM were systematically investigated. As shown 
in Fig. 1a, the UV–Vis‑NIR absorbance of SP in THF dis‑
plays a strong absorption peak at 840 nm corresponding to 
the intramolecular charge transfer from the D to A. SPN in 
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PBS showed a similar absorption pattern to that of SP in 
THF, confirming that the strong NIR absorption does not 
come from J‑aggregation [47]. The calculated molecular 
orbitals of the SP dimer showed that both the HOMO and 
LUMO were delocalized along the polymer backbone, indi‑
cating a large π‑conjugated system with a narrow bandgap 
of 1.75 eV (Fig. S7), which was consistent with the NIR 
absorption measurements. In addition, the characteristic 
absorption of SPN@RBCM remained nearly unchanged 
compared to SPN before RBCM coating. To evaluate the 
NIR absorption capacity, the corresponding mass extinc‑
tion coefficient at 808 nm was further investigated, which 
was measured to be 28.3 L mg−1 cm−1 (Fig. 1b, c). The 
morphologies of SPN and SPN@RBCM were observed 
by transmission electron microscopy (TEM). As shown in 
Fig. 1d, SPN exhibited a uniform spherical shape with a 
small size of approximately 2–5 nm, and the crystal pat‑
tern from the high‑resolution TEM image further verified its 
P‑dot structure. In contrast, SPN@RBCM presented an obvi‑
ous core–shell structure, which is in good agreement with 
the reported membrane width of erythrocytes (Fig. S8) [25, 

26]. Dynamic light scattering (DLS) measurements revealed 
an average hydrodynamic size (Dh) of 74.6 ± 1.2 nm with a 
polydispersity index (PDI) value of 0.386, indicating the 
monodisperse tendency of SPN@RBCM in aqueous solu‑
tion, which was slightly larger than SPN before RBCM coat‑
ing (Dh: 50.2 ± 0.3 nm; PDI: 0.345) (Fig. 1e). The larger size 
determined by DLS than by TEM was most likely due to the 
nanoparticles under different dry (for TEM) and wet (for 
DLS) measurement conditions, as well as slight aggregation 
in solution [48]. Additionally, SPN@RBCM did not show 
obvious aggregation over 14 days in PBS with 10% FBS, 
indicating its excellent colloid stability under physiologi‑
cal conditions (Fig. S9). In addition, zeta potential analysis 
showed that the charge of SPN changed from − 42.3 ± 0.5 
to − 34.8 ± 0.8 mV after RBCM coating, which is similar 
to the level of RBC vesicles (− 33.1 ± 0.3 mV) (Fig. S10). 
The SDS‑PAGE analysis demonstrated that no major dif‑
ference in the protein profile was observed between SPN@
RBCM and the sourced RBCM vesicles (Fig. 1f). The load‑
ing capacity of SPN and RBCM in SPN@RBCM was deter‑
mined to be 67.3% and 32.7%, respectively, according to 
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NIR absorption measurement. These results confirmed that 
the RBCM was successfully coated on SPN.

3.2  Photothermal Performance of SPN@RBCM

Considering the strong NIR absorption of SPN@RBCM, we 
further explored their photothermal conversion ability, which is 
a vital perquisite for tumor PAI and PTT. As shown in Fig. 2a, 
the temperature of SPN@RBCM aqueous solution increased 
with the extension of irradiation time, and the concentration 
increased upon 808 nm laser irradiation. For instance, as the 
concentration increased from 10 to 60 μg mL−1, the tempera‑
ture of the SPN@RBCM solution increased from 22 to 58 °C 
after 1000 s of laser irradiation (0.8 W cm−2), while the tem‑
perature of pure water (0 μg mL−1 of SPN@RBCM) changed 
insignificantly. The photothermal conversion of SPN@RBCM 

solution was also observed by the infrared (IR) thermal images 
(Fig. 2b). The photothermal conversion efficiency of SPN@
RBCM was calculated to be 59.01%, according to a previously 
reported method (Fig. 2c, d) [49], which is significantly higher 
than that of Au NRs (21%) [50], CuS nanocrystals (25.7%) 
[51], black phosphorus (28.4%) [52], and melanin nanospheres 
(40%) [53]. Furthermore, compared with other reported sem‑
iconducting polymer nanoparticles, such as SPN1‑C (37%) 
[54] and DPP‑IID‑FA NPs (49.5%) [49], our nanoparticles dis‑
played significantly higher photothermal conversion efficiency.

In addition to photothermal conversion efficiency, photo‑
thermal stability is another important index in photothermal 
therapy. To investigate this parameter, SPN@RBCM was irra‑
diated by the 808 nm laser for four “on‑and‑off” cycles. Each 
cycle consisted of 1000 s of irradiation (on state) and then 
turned off to cool to room temperature (off state). ICG, an 
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FDA‑approved NIR dye with photothermal performance under 
808 nm laser irradiation was selected as a control. Compared 
with ICG, which lost nearly all of its photothermal conversion 
ability, there was no appreciable decline in temperature eleva‑
tion for SPN@RBCM (Fig. 2e). This phenomenon could be 
explained by the serious photobleaching of ICG molecules 
under strong 808 nm laser irradiation, while the NIR absorp‑
tion ability of SPN@RBCM did not change under the same 
condition (Fig. 2f). The PAI performance of SPN@RBCM at 
808 nm was determined at different concentrations ranging 
from 0 to 60 μg mL−1, showing that its PA signals increased 
linearly with increasing concentration (Fig. 2g, h). Overall, 
these results suggest the high and stable photothermal perfor‑
mance of SPN@RBCM, which can authorize its great poten‑
tial in PAI and PTT treatment.

3.3  In Vitro Cytotoxicity Assay

Cytotoxicity was evaluated in a series of cell types includ‑
ing normal cells (QSG‑7701, NIH‑3T3) and cancer cells 
(SMMC‑7721, 4T1), by using the CCK‑8 assay. Cell via‑
bility values (%) were assessed by the CCK‑8 prolifera‑
tion test versus incubation with different concentrations 
of SPN or SPN@RBCM in living cells for 24 h. As shown 
in Fig. S11, after coating with RBCM, the cytotoxicity of 
SPN was significantly reduced. Specifically, in NIH‑3T3 
and 4T1 cells, the viability was above 90% even at a high 
concentration of SPN@RBCM (60 μg mL−1), but dramati‑
cally decreased to below 40% for the same concentration 
of SPN. These results indicate that the RBCM decoration 
can improve the biocompatibility of SPN for biological 
applications.

3.4  In Vitro Photothermal Therapy

The excellent photothermal performance of SPN@RBCM 
motivates us to further explore its feasibility in the ablation of 
cancer cells. To this end, SMMC‑7721 or 4T1 cells were incu‑
bated with SPN@RBCM at different concentrations and then 
irradiated by an 808 nm laser at 0.8 W cm−2 for 10 min, and 
the cell viability was quantified by CCK‑8 assay. As shown 
in Fig. 3a, viability of SMMC‑7721 cells decreased as the 
SPN@RBCM concentration increased from 0 to 30 μg mL−1. 
Moreover, compared with SMMC‑7721 cells, 4T1 cells were 

more susceptible to PTT with only 30% surviving even at 
a very low dose of 10 μg mL−1. The cell status after PTT 
treatment was also observed by calcein AM (living cells with 
green fluorescence) and propidium iodide (PI, dead cells with 
red fluorescence) staining (Fig. 3b). The cells treated only 
with SPN@RBCM (60 μg mL−1) or only with laser irradia‑
tion showed entirely green fluorescence, indicating no obvious 
dark cytotoxicity of SPN@RBCM or phototoxicity from laser 
irradiation alone. However, with the incorporation of SPN@
RBCM treatment and laser irradiation, the cell viabilities 
sharply decreased for both SMMC‑7721 and 4T1 cells, which 
was in good agreement with the CCK‑8 results. Moreover, the 
PTT anticancer effect was also determined by flow cytom‑
etry using the Annexin V‑FITC/PI apoptosis assay (Fig. 3c). 
Compared with other groups, the highest percent of apoptosis 
(93% in SMMC‑7721 cells and 97% in 4T1 cells) was found 
in the cells treated with SPN@RBCM and laser irradiation. 
Collectively, these results suggest that SPN@RBCM have 
great potential as a highly efficient PTT agent with excellent 
biocompatibility for cancer treatment. 

3.5  In Vivo Distribution and PAI of SPN@RBCM

To investigate the tumor accumulation and in vivo distribu‑
tion of nanoparticles, BALB/c mice were subcutaneously 
injected with 4T1 cancer cells to establish a tumor‑bear‑
ing mouse model. Afterward, a near‑infrared fluorescence 
probe (DiR) was loaded into SPN and SPN@RBCM with 
the nanoprecipitation procedure mentioned in Sect. 2.3 for 
in vivo fluorescence imaging (FL) after intravenous injec‑
tion. As shown in Fig. 4a, the DiR fluorescence signal 
clearly emerged in the tumor site after injection with the 
nanoparticles, and these signals gradually increased over 
time, ranging from 0 to 24 h, and then reached a platform 
that was sustained for more than 48 h, suggesting effective 
accumulation within tumor via passive targeting mecha‑
nisms such as the EPR effect. Moreover, we examined DiR 
fluorescence in the excised major organs of treated mice 
48 h postinjection (Fig. 4b). In addition to the notable 
fluorescence that appeared in the liver, which indicates 
the inevitable capture of SPN@RBCM by the reticuloen‑
dothelial system (RES), the accumulation of SPN@RBCM 
in the tumor site was significantly high. Meanwhile, com‑
pared with SPN, SPN@RBCM showed enhanced tumor 
accumulation while reduced liver capture. Taken together, 
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these observations indicate that the RBC membrane favors 
tumor accumulation and escapes from the RES capture.

It is well known that the longer in  vivo circulation 
lifetime of NPs could contribute to the EPR effect for 
improving tumor accumulation [55]. Thus, we checked 
whether SPN@RBCM exhibited superior blood retention 
compared to SPN after i.v. injection. At different postin‑
jection times, 20 μL of blood was collected from the tail 
vein to determine NP contents by fluorescence measure‑
ments. The results showed that SPN@RBCM exhibited 
observably enhanced blood retention compared with SPN 
(Fig. 4c), implying that SPN@RBCM can inherit the merit 

of long circulation lifetime from sourced RBCs. We fur‑
ther explored the potential mechanism by which elimina‑
tion was reduced to improve the blood retention of SPN 
after RBCM coating. As macrophage internalization is the 
major pathway for NP elimination in the RES system, we 
next checked the in vivo NP clearance by macrophages 
after i.v. injection. For this purpose, monocytes were iso‑
lated from the blood, and then incubated with APC‑affinity 
anti‑CD11b antibody. The engulfment of NPs by mac‑
rophages could be analyzed according to the DiO signal in 
CD11b positive cells. As shown in Fig. 4d, SPN@RBCM 
showed improved anti‑phagocytosis ability compared to 
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uncoated SPN in vivo, indicating decreased recognition 
by immune system after RBCM camouflage.

Efficient tumor accumulation was also validated through 
the in vivo PAI signal of tumor in living mouse after i.v. 
injection of SPN@RBCM. As shown in Fig. 4e, the tumor 
showed obvious PA signals at 808 nm after 24 and 48 h 
of injection, and the PA intensity of SPN@RBCM‑injected 
mice was stronger than that of SPN injected mice, which was 
in line with the fluorescence imaging results.

In addition to high tumor accumulation, the small size 
of SPN@RBCM might also contribute to enhanced tumor 
penetration. To verify this hypothesis, the tumor excised 

from the mice administrated with SPN@RBCM was cut into 
three slices from top to bottom, as illustrated in Fig. 4f, and 
fluorescence images of each slice were recorded. As shown 
in Fig. 4g, the DiR signal appeared in the whole region of 
every slice from SPN@RBCM‑treated mice, suggesting the 
good tumor penetration of SPN@RBCM in vivo. Further‑
more, small‑sized nanoparticles can avoid the potential long‑
term retention and toxicity. Accordingly, we investigated the 
clearance route and biodistribution of SPN@RBCM in nor‑
mal BALB/c mice. Time‑dependent ex vivo fluorescence 
imaging of the major organs revealed that SPN@RBCM 
was mainly located in the liver with the first 2 days after 
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intravenous injection. However, after 4 days, no FL signal 
was detected in any of the organs, indicating favorable clear‑
ance of SPN@RBCM in vivo (Fig. 4h).

3.6  In Vivo Photothermal Therapy

The excellent in vitro cell‑killing effect of SPN@RBCM 
nanoparticles under NIR irradiation further encouraged us 

to explore their in vivo PTT antitumor efficacy. For this pur‑
pose, 4T1 tumor‑bearing mice were randomly divided into 
five groups (PBS, PBS + Laser, SPN@RBCM, SPN + Laser, 
SPN@RBCM + Laser). As shown in Fig. 5a, the tempera‑
ture of the tumor site in the mice that received i.v. injec‑
tion of SPN rapidly reached 50 °C with laser irradiation 
(808 nm, 0.6 W cm−2) for 10 min, verifying the efficient 
photothermal conversion ability of SPN in the tumor site 
under laser irradiation. More significantly, under the same 
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laser irradiation conditions, the temperature of the tumors in 
the mice injected with SPN@RBCM reached 56 °C within 
10 min due to the higher tumor accumulation after coated 
with RBCM. In contrast, the temperature of tumor in PBS, 
PBS + Laser or SPN@RBCM groups changed slightly under 
laser irradiation. Afterward, the PTT therapeutic efficacy of 
our nanoparticles was investigated by observing the changes 
of tumor size after laser irradiation. As shown in Fig. 5b, 
the tumor sizes in the PBS, PBS + Laser, and SPN@RBCM 
groups experienced rapid growth, indicating that single laser 
irradiation or SPN@RBCM treatment alone have no effect 
on tumor inhibition. However, upon laser irradiation, both 
SPN and SPN@RBCM could restrain tumor growth com‑
pletely, proving the remarkable PTT antitumor efficacy of 
our nanoparticles because the temperature of the tumors in 
these two groups increased above 42 °C, which is sufficient 
to kill cancer cells. Meanwhile, the tumor weights were also 
recorded to confirm the antitumor efficacy at the end of treat‑
ment on day 30 (Fig. 5c). The average tumor weight in PBS 
group, with or without laser irradiation, was above 0.3 g, and 
the SPN@RBCM group without laser irradiation showed a 
similar result. Nevertheless, SPN and SPN@RBCM with 
laser irradiation had no tumor residues. These results were 
also confirmed by the photographs of the tumor tissues at 
the end of treatment (Fig. 5d), further suggesting the optimal 
PTT antitumor efficacy of SPN@RBCM. Besides, the body 
weights of each group had no significant changes during 
the monitoring period, indicating much less biotoxicity of 
our prepared nanoparticles (Fig. S12). Then, histological 
examination (H&E, Ki67 and TUNEL) of the treated tumor 
also was utilized to confirm the PTT antitumor efficacy. 
As shown in Fig. 5e, consistent with the above antitumor 
evaluations, SPN@RBCM with laser irradiation caused 
serious damage to tumor tissues, compared with the control 
groups. Although there were no significant differences in the 
antitumor effects between SPN and SPN@RBCM in these 
experiments, we still considered that the RBCM coating was 
meaningful, considering that this strategy could increase 
SPN tumor accumulation, which might in return reduce the 
administration dose or laser power to improve the safety of 
PTT treatment.

Subsequently, we analyzed the blood biochemistry and rou‑
tine indexes to evaluate the potential toxicity of SPN@RBCM 
in vivo (Fig. 5f, g). All the tested results were within the nor‑
mal range after intravenous administration at different time 
points. The histopathological changes of the major organs were 

observed for all groups at the end of treatment (Fig. 5h). There 
were no significant physiological abnormalities in the major 
organs of all groups. Overall, these results suggest the low sys‑
temic toxicity of prepared nanoparticles. In addition, the safety 
of laser irradiation is another important index for the clinical 
translation of PTT. Although the laser power used in our cur‑
rent study (0.5 W cm−2) is still over the safety limit (maximum 
permissible exposure of 0.33 W cm−2), this issue could be 
resolved by increasing the administration dose to reach the 
comparable PTT efficacy at lower laser photo‑density.

4  Conclusions

In summary, we have prepared a novel phototheranostic 
platform based on D–A semiconducting polymer nano‑
particle (SPN) with surface camouflaged by red blood cell 
membrane (RBCM) for NIR photoacoustic imaging (PAI) 
and photothermal therapy (PTT). The as‑prepared SPN@
RBCM nanoparticles display excellent NIR absorbance, 
high photothermal conversion ability, and good photother‑
mal stability. Moreover, inherited from the natural features 
of the sourced red blood cells, the SPN@RBCM nano‑
particles possess excellent performance of the enhanced 
biocompatibility, reduced retention in the reticuloendothe‑
lial system, prolonged blood circulation, and the improved 
tumor accumulation. On the other hand, the SPN@RBCM 
has small size (< 5 nm), which not only shows deep pen‑
etration in tumor site, but also can be easily cleared out 
from the body to overcome the long‑term toxicity induced 
by the undefined residues after systemic administration. 
Therefore, as‑prepared SPN@RBCM could act as an opti‑
mal phototheranostic nanoagent to provide intensified PA 
signals for tumor imaging and enhanced photothermal kill‑
ing effects for cancer treatment. Given these outstanding 
characteristics, this nanoplatform might be a promising 
phototheranostic agent for clinical translation in future.
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