Supporting Information for

Artificial Nanoscale Erythrocytes from Clinically Relevant Compounds for Enhancing Cancer Immunotherapy

Wenquan Ou¹, Kang Sik Nam², Dae Hoon Park², Jungho Hwang^{2, *}, Sae Kwang Ku³, Chul Soon Yong¹, Jong Oh Kim^{1, *}, Jeong Hoon Byeon^{4, *}

¹College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea

²School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

³College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea

⁴School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Wenquan Ou and Kang Sik Nam contributed equally to this work

*Corresponding authors. E-mail: hwangjh@yonsei.ac.kr (Jungho Hwang); jongohkim@yu.ac.kr (Jong Oh Kim); postjb@yu.ac.kr (Jeong Hoon Byeon)

Supplementary Figures and Tables

Fig. S1 Mechanical and electrical parameters with high-speed camera images of the two-phase electrospray. (**A**, **B**) Capillary (*Ca*) and Reynolds (*Re*) numbers as a function of volumetric flow ratio between the Eu/PTX solution (Q_1) and air (Q_2). (**C**) Characteristic balance (B_c) between the B_E^2 and *CaRe* exhibiting a balance between the electrical and mechanical parameters of the electrospray. (**D**) High-speed camera images of meniscus shapes from different Q_2/Q_1 operations

Fig. S2 (**A**) High-resolution TEM and digital images of collected powder forms of Eu-s/PTX (from single-phase electrospray) and Eu-FBCP/PTX (from two-phase electrospray). The TEM images exhibit clear difference in core region contrast between Eu-s/PTX (thick core) and Eu-FBCP/PTX (thin core). (**B**) Raman spectra of Eu-FBCP/PTX, as well as individual PTX and Eu-FBCP. (**C**) In-flight size distribution of Eu-FBCP/PTX observed using a SMPS by direct vacuum sampling of floating particles right after electrospraying. (D) A representative TEM image and its energy-dispersive X-ray maps (red: carbon dots, green: phosphorus dots) from electrospray of BP NP included Eu/PTX solution

Fig. S3 Physical characterization of Eu-s/PTX for comparison. (**A**) DSL size distribution of Eu-s/PTX dispersed in PBS (refer to the inset digital image). (**B**, **C**) SEM (low- and high-magnification) and TEM images of Eu-s/PTX collected on a carbon-coated copper grid

Fig. S4 Percentage *EE* and *LC* profiles of Eu-FBCP/PTX with increasing PTX content from 5% to 25% (PTX-to-Eu weight ratio) (n = 6)

Fig. S5 Time profiles of mean DLS size and *EE* of Eu-FBCP/PTX dispersed in DW, PBS, or RPMI + 10% FBS for 8 h (n = 6)

Fig. S6 DLS size distributions of Eu-FBCP/PTX after 8 h dispersed in DW, PBS, and RPMI + 10% FBS

Fig. S7 FACS analyses to examine time- and dose-dependent cellular uptake of Eu-FBCP, as well as Eu-s for comparison. (**A–D**) Time-dependent uptake profiles and corresponding quantified indices of Cy5.5 tagged on Eu-FBCP and Eu-s under an identical dose (n = 3). (**E–H**) Dose-dependent uptake profiles and corresponding quantified indices of Cy5.5 tagged on Eu-FBCP and Eu-s under an identical inclusion time (n = 3; **p < 0.01 and ***p < 0.001)

Fig. S8 Mature DCs exposed to tumor-associated antigen generated from MC-38 cells treated with Eu-FBCP/PTX, as well as free PTX and Eu-s/PTX for comparison. CD11c⁺CD86⁺ cells are the indicators of mature DCs (n = 3; $*^{*}p < 0.01$).

Fig. S9 (A) Infiltrating CD8⁺ T cells in tumor microenvironment after treatments with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison (n = 6). (**B**, **C**) Intratumoral granzyme B⁺ and IFN- γ^+ CD8⁺ T cells after the treatments (n = 6; *p < 0.05, **p < 0.01, and ***p < 0.001)

Fig. S10 (**A**) TNF- α levels in tumor microenvironment from mice treated with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison (n = 6). (**B**) Infiltrating CD8⁺ T-to-Treg cell ratios in tumors isolated from the treated mice (n = 6; *p < 0.05, **p < 0.01, and ***p < 0.001)

Fig. S11 Body weight profiles of MC-38 tumor-bearing mice treated with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison (n = 6)

Nano-Micro Letters

Fig. S12 Digital images of mice taken at the final day after treatments with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison

Fig. S13 Histopathological and immunohistochemical images to assess levels of HMGB1, CRT, Ki-67, and CD31 in tumors obtained from MC-38 tumor-bearing mice treated with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison

Fig. S14 *In vivo* histopathological images for hearts, livers, spleens, lungs, and kidneys isolated from mice treated with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison

Normal	EI IgG antibody	Eu-FBCP/PTX CD4+CD8 antibody		
			antibody I	
	-			

Fig. S16 Digital images of differently immunocompromized mice taken at the final day after treatments with Eu-FBCP/PTX with and without aPL

Table S1 Summary of DSL size distributions of Cy5.5-labeled Eu (RL or RS)-FBCP and Eu (RL or
RS)-s

Groups	Size (nm)	PDI
Eu-s/Cy5.5 (RL)	318.7 ± 2.5	0.109 ± 0.014
Eu-FBCP/Cy5.5 (RL)	321.3 ± 1.8	0.094 ± 0.008
Eu-s/Cy5.5 (RS)	322.2 ± 3.1	0.142 ± 0.017
Eu-FBCP/Cy5.5 (RS)	321.4 ± 2.6	0.111 ± 0.036

Table S2 Histomorphometrical analysis of tumor masses, taken from MC-38 allograft tumor-bearing mice treated with Eu-FBCP/PTX and Eu-FBCP/PTX + aPL, as well as PBS, free PTX, aPL, Eu-s/PTX, and Eu-s/PTX + aPL for comparison

Groups	G1	Test formula treated groups		S			
ltems	(PBS control)	G2	G3	G4			
TCV (%/mm²)	87.57±4.88	74.12±3.92ª	62.86±3.55 ^{ab}	50.74±5.22 ^{abd}			
Immunoreactive	cell percentages (%/mm	² of tumor mass)					
Cleaved-Caspase-3	4.83±1.95	14.84±3.42ª	25.43±3.51 ^{ab}	39.66±3.72 ^{abd}			
Cleaved-Caspase-9	6.93±2.52	15.65±3.10ª	21.40±2.83 ^{ac}	37.25±3.40 ^{abd}			
Ki-67	53.12±6.45	40.18±4.02 ^h	32.03±3.47 ^{hj}	23.03±3.09 ^{hik}			
CD31	47.65±2.96	36.39±3.14ª	29.64±2.83 ^{ab}	23.35±2.35 ^{abd}			
HMGB1	2.64±1.17	12.80±2.72ª	23.55±3.27 ^{ab}	37.36±4.83 ^{abd}			
CRT	6.38±2.64	17.45±2.48ª	28.62±3.90 ^{ab}	41.11±2.81 ^{abd}			
Immunoreactive	Immunoreactive cell numbers (cells/mm ² of tumor mass)						
CD8	46.33±10.31	139.33±29.98 ^h	279.00±19.30 ^{hi}	378.67±24.68 ^{hik}			
		G5	G6	G7			
		39.53±5.17 ^{abde}	29.42±4.36 ^{abdef}	15.74±4.88 ^{abdefg}			
		48.79±3.60 ^{ab de}	64.25±4.02 ^{ab def}	78.79±3.49 ^{abdefg}			
		45.24±4.81 ^{abde}	62.95±3.77 ^{ab def}	76.62±4.79 ^{abdefg}			
		14.17±2.97 ^{hikl}	8.33±1.44 ^{hiklm}	3.30±1.36 ^{hiklmn}			
		18.99±2.36 ^{abde}	9.66±2.11 ^{ab def}	3.58±1.30 ^{ab defg}			
		49.09±4.17 ^{abde}	63.27±6.44 ^{ab def}	81.77±6.29 ^{abdefg}			
		53.81±5.44 ^{abde}	64.62±5.23 ^{ab def}	83.18±7.24 ^{ab defg}			
		624.33±90.77 ^{hikl}	1419.83±310.12 ^{hiklm}	2636.33±596.09 ^{hiklmn}			

Values are expressed as mean \pm SD of six tumor mass histological fields.

Groups: G1 = PBS; G2 = free PTX; G3 = Eu-s/PTX; G4 = Eu-FBCP/PTX; G5 = aPL; G6 = Eu-s/PTX + aPL; and G7 = Eu-FBCP/PTX + aPL.

- $^{a}p < 0.01$ as compared to G1 by Fisher's least significant difference (LSD) test;
- $^{b}p < 0.01$ and $^{c}p < 0.05$ as compared to G2 by LSD test;
- $^{d}p < 0.01$ as compared to G3 by LSD test;
- $^{e}p < 0.01$ as compared to G4 by LSD test;
- $^{\rm f}p$ < 0.01 as compared to G5 by LSD test;
- ${}^{g}p < 0.01$ as compared to G6 by LSD test;

 $^{h}p < 0.01$ as compared to G1 by Mann–Whitney (MW) test;

 $^{i}p < 0.01$ and $^{j}p < 0.05$ as compared to G2 by MW test;

 ${}^{k}p < 0.01$ as compared to G3 by MW test;

 $^{1}p < 0.01$ as compared to G4 by MW test;

 $^{\rm m}p < 0.01$ as compared to G5 by MW test; and

 $^{n}p < 0.01$ as compared to G6 by MW test.

S9/S9