Supporting Information for

Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced

by Natural Sedimentation

Ning Sun^{1,}[†], Zhaoruxin Guan^{1,}[†], Qizhen Zhu¹, Babak Anasori^{2, 3}, Yury Gogotsi^{2, *}, Bin Xu^{1, *}

¹State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA

³Integrated Nanosystems Development Institute, Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University – Purdue University Indianapolis, Indianapolis, IN 46202, USA

[†]Ning Sun and Zhaoruxin Guan contributed equally to this work

*Corresponding authors. E-mail: binxumail@163.com or xubin@mail.buct.edu.cn (B. Xu), gogotsi@drexel.edu (Y. Gogotsi)

Supplementary Tables and Figures

	high-angle peak		low-ang	low-angle peak	
	20	d (Å)	20	d (Å)	
Vac-0.5	7.24	12.20	6.28	14.06	
Nat-2	7.17	12.32	6.08	14.52	
Nat-1	7.10	12.44	6.03	14.64	
Nat-0.5	7.03	12.56	5.98	14.76	

Table S1 2θ for the split (002) peaks and the calculated interlayer distances of the conventional vacuum-filtered MXene film and natural-sedimented MXene films

Table S2 Comparison of lithium storage performance between naturally-sedimented MXene and other reported pure $Ti_3C_2T_x$ MXene anode materials

Electrode material	Li-storage capacity	Cycle performance	Rate performance	Refs.
Free-standing Ti ₃ C ₂ T _x MXene film prepared by	351 mAh g ⁻¹ at 30 mA g ⁻¹	242 mAh g ⁻¹ at 320 mA g ⁻¹ over	115 mAh g ⁻¹ at 500 mA g ⁻¹	This
natural sedimentation		1000 cycles (no capacity loss)		work
Heteroatom-controlled	221 mAh g ⁻¹ at 32 mA g ⁻¹	${\sim}100$ mAh g ⁻¹ at 320 mA g ⁻¹ over 500	124 mAh g ⁻¹ at 320 mA g ⁻¹	[S1]
$Ti_3C_2T_x$ MXene films by annealing		cycles		
Free-standing $Ti_3C_2T_x$ electrode prepared by cold	120 mAh g ⁻¹ at 30 mA g ⁻¹	28 mAh g ⁻¹ over 50 cycles		[S2]
pressed	(electrode thickness: 220 µm)			
Al ³⁺ pre-intercalated Ti ₃ C ₂ T _x film electrode	157.6 mAh g ⁻¹ at 1 C	Retaining 85% over 100 cycles	42.5 mAh g ⁻¹ at 5 C	[S3]
Low-F Ti ₃ C ₂ MXene film prepared by annealing	~123.7 mAh cm ⁻³ at 1 C	Retaining 75% over 100 cycles	~50 mAh cm ⁻³ at 5 C	[S4]
$Ti_3C_2T_x$ MXene film treated with hydrazine vapor and	${\sim}180~mAh~g^{\text{-1}}$ at 100 mA $g^{\text{-1}}$	56.4 mAh g ⁻¹ at 1A g ⁻¹ over 1000	80 mAh g ⁻¹ at 1 A g ⁻¹	[S5]
annealing		cycles		
$Ti_3C_2T_x$ paper prepared by intercalation with	410 mAh g ⁻¹ at 1 C	_	—	[S6]
hydrazine monohydrate				
Porous $Ti_3C_2T_x$ film	${\sim}110$ mAh g^1 at 0.5 C	Retaining ~100% over 100 cycles		[S7]
$Ti_3C_2T_x$ /CNT composite films (9:1)	220 mAh g^1 at 0.5 C	Retaining ~100% over 100 cycles		[S7]
Porous $Ti_3C_2T_x$ /CNT composite films (9:1)	$650 \text{ mAh } \text{g}^1 \text{ at } 0.1 \text{ C}$	Capacity increases over 100 cycles	\sim 230 mAh g ¹ at 10 C	[S7]
Ti ₃ C ₂ /CNTs hybrid film (1:1)	403.5 mAh g ⁻¹ at 0.5 C	428.1 mAh g ⁻¹ over 300 cycles	218.2 mAh g ⁻¹ at 2 C	[S8]
Ti ₃ C ₂ intercalated with DMSO	${\sim}210$ mAh g ⁻¹ at 26 mA g ⁻¹	118 mAh g ⁻¹ at 260 mA g ⁻¹ over 75	123.6 mAh g ⁻¹ at 260 mA g ⁻¹	[S9]
		cycles		
Nitrogen containing Ti ₃ C ₂ prepared by heat treatment	${\sim}250~mAh~g^{\text{-1}}$ at 32 mA $g^{\text{-1}}$		168 mAh g ⁻¹ at 320 mA g ⁻¹	
in NH ₃				[S10]
Multilayer Ti ₃ C ₂ MXene improved by calcination	254.6 mAh g ⁻¹ at 0.1 C	147.4 mAh g ⁻¹ at 1 C over 100 cycles	120 mAh g ⁻¹ at 4 C	
				[S11]

	Vac-0.5	Nat-2	Nat-1	Nat-0.5
$R_{e}\left(\Omega ight)$	8.9	5.1	4.3	3.1
$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	105.2	89.2	67.5	49.7
$\mathbf{R}_{\mathrm{Li}}\left(\Omega ight)$	595.6	540.9	347.1	325.6

 Table S3 The fitting resistance of the obtained MXene films

Fig. S1 Cross-sectional SEM images of Nat-1 film (a) and Nat-2 film (b)

Fig. S2 Raman spectra of the as-prepared MXene films

Fig. S3 CV profiles at 0.1 mV s⁻¹ and galvanostatic charge/discharge curves at 30 mA g^{-1} for the initial three cycles of Nat-2 film (**a**, **b**) and Nat-1 film (**c**, **d**)

Fig. S4 CV curves at various scan rates ranging from 0.1 to 2 mV s⁻¹ of Vac-0.5 (**a**), Nat-2 (**b**) and Nat-1 (**c**) and the relationships between the peak current and scan rate for the anodic peak at ~2.0 V of the prepared MXene films (**d**)

Supplementary References

- [S1]Zhang H., Xin X., Liu H., Huang H., Chen N., et al., Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti₃C₂T_x MXene. J. Phys. Chem. C **123**(5), 2792-2800 (2019). https://doi.org/10.1021/acs.jpcc.8b11255
- [S2]Kim S.J., Naguib M., Zhao M.Q., Zhang C.F., Jung H.T., Barsoum M.W., Gogotsi Y., High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochim. Acta 163, 246-251 (2015). https://doi.org/10.1016/j.electacta.2015.02.132
- [S3]Lu M., Han W., Li H., Shi W., Wang J., et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16, 163-168 (2019). https://doi.org/10.1016/j.ensm.2018.04.029
- [S4]Lu M., Li H., Han W., Chen J., Shi W., et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy. Chem. **31**, 148-153 (2019). https://doi.org/10.1016/j.jechem.2018.05.017
- [S5]Ma Z., Zhou X., Deng W., Lei D., Liu Z., 3D porous MXene (Ti₃C₂)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634-3643 (2018). https://doi.org/10.1021/acsami.7b17386
- [S6]Mashtalir O., Naguib M., Mochalin V.N., Dall'Agnese Y., Heon M., Barsoum M. W., Gogotsi Y., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- [S7]Ren C.E., Zhao M.Q., Makaryan T., Halim J., Boota M., et al., Porous twodimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. Chemelectrochem 3(5), 689-693 (2016). https://doi.org/10.1002/celc.201600059
- [S8]Liu Y., Wang W., Ying Y., Wang Y., Peng X., Binder-free layered Ti₃C₂/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Trans. 44(16), 7123-7126 (2015). https://doi.org/10.1039/c4dt02058h
- [S9]Sun D., Wang M., Li Z., Fan G., Fan L.-Z., Zhou A., Two-dimensional Ti₃C₂ as anode material for Li-ion batteries. Electrochem. Commun. 47, 80-83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026

- [S10] Cheng R., Hu T., Zhang H., Wang C., Hu M., et al., Understanding the lithium storage mechanism of Ti₃C₂T_x mxene. J. Phys. Chem. C 123(2), 1099-1109 (2018). https://doi.org/10.1021/acs.jpcc.8b10790
- [S11] Kong F., He X., Liu Q., Qi X., Zheng Y., Wang R., Bai Y., Improving the electrochemical properties of MXene Ti₃C₂ multilayer for Li-ion batteries by vacuum calcination. Electrochim. Acta 265, 140-150 (2018). https://doi.org/10.1016/j.electacta.2018.01.196