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HIGHLIGHTS

• A hybridized mechanical and solar energy‑driven hydrogen production system was developed.

• A rotatory disc‑shaped triboelectric nanogenerator (RD‑TENG) enables to harvest mechanical energy from water flow and functions 
as a sufficient external power source.

• WO3/BiVO4 heterojunction is fabricated as photoanodes in the self‑powered photoelectrochemical (PEC) cell, and the hydrogen pro‑
duction rate reaches to 7.27 μL min−1 under sunlight illumination with the energy conversion efficiency of 2.59%.

ABSTRACT Photoelectrochemical hydrogen generation is a promising 
approach to address the environmental pollution and energy crisis. In this 
work, we present a hybridized mechanical and solar energy‑driven self‑
powered hydrogen production system. A rotatory disc‑shaped triboelectric 
nanogenerator was employed to harvest mechanical energy from water and 
functions as a sufficient external power source.  WO3/BiVO4 heterojunction 
photoanode was synthesized in a PEC water‑splitting cell to produce  H2. 
After transformation and rectification, the peak current reaches 0.1 mA at 
the rotation speed of 60 rpm. In this case, the  H2 evolution process only 
occurs with sunlight irradiation. When the rotation speed is over 130 rpm, 
the peak photocurrent and peak dark current have nearly equal value. Direct 
electrolysis of water is almost simultaneous with photoelectrocatalysis of 
water. It is worth noting that the hydrogen production rate increases to 5.45 
and 7.27 μL min−1 without or with light illumination at 160 rpm. The corresponding energy conversion efficiency is calculated to be 2.43% 
and 2.59%, respectively. All the results demonstrate such a self‑powered system can successfully achieve the PEC hydrogen generation, 
exhibiting promising possibility of energy conversion.
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1 Introduction

The serious energy crisis is an urgent global problem that 
mankind must turn to in the present and future. Hydrogen 
energy has been attracting increasing attention as a promis‑
ing clean energy [1–3]. Through photoelectrochemical (PEC) 
water splitting, solar energy can be directly converted into 
hydrogen energy [4, 5]. However, in real applications, this 
process usually needs an external bias due to the improper 
band position of some semiconductor photocatalysts [6–11]. 
Morisaki et al. [12] constructed a  TiO2‑solar‑cell hybrid elec‑
trode structure that undoubtedly provides an important devel‑
opment in PEC water splitting owing to the possibility of the 
application of an external bias generated by solar cells. After 
that, solar cells have been widely used in the field of PEC 
hydrogen production [13]. However, the considerable cost 
and complexity of the manufacture technology have impeded 
their commercial applications.

As an energy converter, triboelectric nanogenerator 
(TENG) can harvest various types of mechanical ener‑
gies, such as human motion, wind energy, and hydropower 
[14–23]. The birth of TENG provides an approach as exter‑
nal bias for driving different electrochemical processes 
[24–26]. Accordingly, Tang et al. [27] developed a hybrid 
system constituted by coupling a TENG and a water‑split‑
ting unit and achieved fully self‑powered water splitting 
for hydrogen generation. However, due to the peak output 
characteristics, the output of TENGs does not always keep 
at the peak value. At low voltage range, the electrolytic 
water‑splitting process cannot happen at all, which greatly 
reduces the conversion efficiency. Soon after, another effi‑
cient strategy was proposed through PEC water splitting 
by simultaneously harvesting solar energy and mechani‑
cal energy [28–30]. Li et al. [31] developed a new type of 
TENG‑PEC‑based hybrid cell using  TiO2 as photoanodes 
to obtain hydrogen. Nevertheless, limited by its wide band 
gap (3.2 eV),  TiO2 can only absorb ultraviolet photons 
[32]. Before long, another efficient strategy was proposed 
through PEC water splitting by harvesting mechanical 
energy as an external bias to offset the band position of 
semiconductor photocatalysts [33]. Thus, exploring new 
photocatalytic materials as photoanodes towards this novel 
PEC hydrogen generation system attracts great attention.

In this work, a self‑powered PEC hydrogen production 
system was successfully demonstrated to generate hydrogen. 

 WO3/BiVO4 heterojunction nanostructure was prepared by 
water bath and electrodeposition method as photoanode in the 
PEC water‑splitting cell to generate hydrogen. A rotatory disc‑
shaped TENG (RD‑TENG) served as mechanical energy har‑
vester based on the coupling effects of triboelectrification and 
electrostatic induction. After transformation and rectification, 
the generated electricity by RD‑TENG acted as an external 
bias to achieve the overall PEC water splitting. The photo‑
current output and dark current output under different rota‑
tion speeds were measured. Moreover, the hydrogen produc‑
tion rate under illumination had obvious increase compared 
to those of dark conditions. The detailed phenomenon and 
mechanism of the self‑powered PEC hydrogen generation pro‑
cess have also been discussed. Finally, the whole system has 
been demonstrated to realize the PEC hydrogen generation.

2  Experimental Methods

2.1  Preparation of  WO3 Photoanode

Fluorine‑doped  SnO2 glass (FTO, Nippon Sheet Glass, 
14 O sq−1, Japan) was cut into blocks (5 × 3 × 0.2 cm3), and 
then dipped into acetone, ethanol, and deionized water for 
ultrasonic cleaning for 20 min, respectively. The precursor 
solution was obtained by the following two steps. Firstly, 
 H2WO4 (0.6  g),  (NH4)2C2O4 (0.28  g), HCl (37%) with 
18 mL and  H2O2 (37%) with 20 mL were added to 62 mL of 
deionized water; the second step is to add 60 mL of ethanol 
under strong agitation. The conductive surface of the previ‑
ously cleaned FTO glass was dipped into the precursor solu‑
tion in the water bath at 85 °C and kept for 3 h, after being 
naturally cooled to room temperature, washed with deion‑
ized water, and finally dried at 80 °C for 5 h. After placing 
the FTO glass in the autoclave, and finally annealed for 3 h 
with controlled temperature at 500 °C, the  WO3 photoanode 
was obtained on the FTO substrate.

2.2  Preparation of  BiVO4 Photoanode

Bi(NO3)3·5H2O was mixed with 50 mL 0.4 M KI solution, 
and then  HNO3 was added until the pH value was reduced 
to 1.7 to obtain a Bi(NO3)3 solution with 0.04 M. The above 
Bi(NO3)3 solution was mixed with 20 mL of anhydrous eth‑
anol and 0.23 M p‑benzoquinone by strongly stirring. An 
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electrochemical workstation (CHI 660D) and a three‑elec‑
trode cell was used for electrodeposition, where an Ag/AgCl 
electrode served as the reference electrode (RE), a Pt wire 
acted as the counter electrode (CE), and a cleaned FTO glass 
was regarded as the working electrode (WE). The deposition 
time was set to 10 min. Cathodic deposition was conducted 
at − 0.1 V versus Ag/AgCl potentiostatically at room tem‑
perature (RT), and finally the BiOI electrodes were obtained. 
A dimethyl sulfoxide (DMSO) solution including VO(acac)2 
(0.2 M) was put on BiOI electrodes in 0.15–0.2 mL, then 
annealed for 2 h with 2 °C min−1 in the autoclave, and 
annealing temperature was set at 450 °C to obtain the  BiVO4 
electrode. To keep excess  V2O5 of  BiVO4 electrodes, the 
 BiVO4 electrode in NaOH solution (1 M) was soaked for 
30 min. The prepared  BiVO4 electrode was washed using 
deionized water and dried at room temperature.

2.3  Preparation of  WO3/BiVO4 Photoanode

To prepare  WO3/BiVO4 heterojunction photoanode, the 
fluorine‑doped  SnO2 (FTO) WE was replaced by the  WO3 
film, and the other experimental steps are the same as above.

2.4  Fabrication of the RD‑TENG

The stator: the matching acrylic sheets were cut as the sup‑
porting base board. The print circuit board (PCB) decorated 
with interdigital copper electrodes is attached to acrylic 
sheets. Then, a PTFE thin film is attached to the copper 
electrodes. Lastly, the rotator and the stator are mounted 
coaxially, and two conductors separated by an insulator are 
welded on the two copper electrodes.

The rotator: the laser cutter (Huitian Laser 4060) was 
used to cut the acrylic sheets (diameter, 184 mm; thickness, 
3 mm) as the supporting base board. A PCB was depos‑
ited with an arrayed radially copper segment (central angle: 
1.5° and thickness 70 μm). The PCB is made from stiff glass 
epoxy.

2.5  Characterizations

A scanning electron microscope (SEM, FEI Quanta 200 
F) and a high‑resolution transmission electron microscopy 
(HRTEM, FEI/Philips Tecnai 12 Bio‑TWIN) were used 
for the morphology characterization; meanwhile images of 

HRTEM and EDX spectroscopy were taken with a CM200 
FEG transmission electron microscope. The structure was 
characterized by an X‑ray diffraction (XRD, PANalytical, 
Empyrean) and an X‑ray photoelectron Spectrometer (XPS, 
Kratos AXIS UltraDLD). The binding energies measured by 
XPS for each sample were calibrated on the basis of the C 1s 
peak (284.6 eV) [34]. UV–Vis spectra were performed by a 
Lambda 750 spectrophotometer. UPS spectra were measured 
on a He I (21.2 eV) gas discharge lamp. Hydrogen produc‑
tion rate was measured by a  H2 collection tube (with a divi‑
sion of 20 μL): the Pt electrode was inserted into the  H2 
collection tube, where the  H2 collection tube was fully filled 
with electrolytes, and then partly inserted into the electro‑
lyser. The gas volume is recorded by the  H2 collection tube 
during experiment from 100 to 160 rpm in darkness or under 
illumination. At last, the hydrogen production yield can be 
obtained by the ratio of gas volume and time.

2.6  Electrical Measurement

A transformer (Taizhou Quanyi Electric Appliance Co., Ltd, 
EI24X13) was employed in the circuit for power manage‑
ment. A rotary motor (MODEL 86HSE8.5 N‑B32) was used 
to drive the RD‑TENG rotation, while a programmable elec‑
trometer (keithley‑6514) was applied to test the Voc, Isc and 
transfer‑charge quantity (Qtr). Software based on LabVIEW 
platform, real‑time data collection and analysis are realized.

2.7  PEC Measurements

PEC tests were accomplished in a three‑electrode cell with 
an Ag/AgCl electrode as the RE, a Pt wire as the CE, and 
the WE was served by the prepared photoanodes (back‑side 
illumination). Photocurrent was measured in potassium 
phosphate  (KH2PO4) buffer solution (0.5 M, pH = 7) with 
or without 1 M sodium sulphite  (Na2SO3). All illuminated 
areas were 0.1 cm2. According to the following equation, the 
measured voltage was transformed into obtain a reversible 
hydrogen electrode (RHE) scale:

where the ERHE is the calculated potential versus RHE, the 
EAg/AgCl is the potential relative to the Ag/AgCl reference 
electrode, the pH is 7.1, and the E�

Ag/AgCl
 is equal to 0.1976 V 

at 25 °C. A light source (100 mW cm−2) was provided using 

ERHE = E
�

Ag/AgCl
+ EAg/AgCl + 0.059pH
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the XD‑300 xenon high‑brightness cold light source with 
adjustable power under AM 1.5 G filter for the test. The 
scanning rate of the potential was 10 mV s−1 from 0.6 to 
2.4 V versus RHE. Mott–Schottky plots were measured at a 
bias voltage from 0.4 to 0.1 V versus Ag/AgCl and a fre‑
quency of 1 kHz in the dark. We measured the electrochemi‑
cal impedance spectra (EIS) at frequencies ranging from 
10,000 to 0.1 Hz by applying 1.23 V versus RHE with 
amplitude of 10 mV in the light.

3  Results and Discussion

The characterizations of  WO3/BiVO4 photoanodes prepared 
by water bath and followed by electrodeposition method are 
illustrated in Fig. 1. All the characteristic peaks in XRD pat‑
terns of the prepared photoanode belong to the  WO3 (JCPDS 
No. 32‑1395),  BiVO4 (JCPDS No. 14‑0688), and the FTO 
substrate (Fig. 1a), respectively. Compared with pristine 
 WO3 nanoflake (Fig. 1b), the surface of  WO3/BiVO4 seems 
much rougher (Fig. 1c), revealing that the  WO3 surface was 
coated with the  BiVO4 particles. The thickness of the  WO3/

BiVO4 photoanode layer is ~ 4.2 μm (Fig. 1d). Figure 1e 
shows the lattice fringe of d = 0.33 nm could be attributed 
to the (− 201) plane of  WO3, and d = 0.31 nm is in agree‑
ment with the (− 121) plane of  BiVO4, clearly indicating 
that  BiVO4 nanoparticles were efficiently deposited on the 
surface of  WO3 to form a heterojunction. The bandgap val‑
ues of  WO3,  BiVO4, and  WO3/BiVO4 were estimated using 
the UV–Vis absorption spectra, as shown in Fig. 1f, and 
the corresponding values are about 2.58, 2.41, and 2.38 eV, 
respectively [35]. It shows clearly that the light absorption 
range of  WO3 is enlarged after coupling with  BiVO4 and 
the visible‑light absorption capacity is enhanced as well. 
From ultraviolet photoelectron spectroscopy (UPS) spectra 
of  WO3 and  BiVO4 (Fig. S1), we could calculate that the top 
of the valence band (VB) for these two materials is about 
− 7.2 and − 6.9 eV (relative to the level of vacuum), respec‑
tively (Supporting Note S1). Therefore, the band structure 
of  WO3 and  BiVO4 could be calculated using the UV–Vis 
absorption spectra and the UPS results (Fig. 1g), where 0 V 
in RHE equals to − 4.5 V in VAC. The electrode potential 
of the VB of the  BiVO4 is significantly higher than that of 

400 500 600 700

20 30 40 50 60 70

FTO

WO3

BiVO4

WO3/BiVO4

WO3/BiVO4

WO3/BiVO4

WO3
BiVO4
FTO

)e()c()b()a(

(d)

(g)(f)

4.2 µm
d(−1 2 1)=0.31 nm

d(−2 0 1)=0.33 nm10 nm

0.1 eV

W

W 4f5/2
W 4f7/2

WO3

WO3/BiVO4

38 36 34
Binding Energy (eV)

Conduction band edge
Valence band edge

WO3
BiVO4

−4

−5

−6

−7

E (V vs VAC) E (V vs NHE)
(h)WO3

BiVO4
2.0

1.6

1.2

0.8

In
te

ns
ity

 (a
.u

.)

In
te

ns
ity

 (a
.u

.)

In
te

ns
ity

 (a
.u

.)

2.
58

 e
V

2.
41

 e
V

h+
h+

2

3

1

0

−1

H2/H2O
BiVO4WO3

H2O/O2

Wavelength (nm)

(α
hv

)1/
2

2θ (°)

hv (eV)
2.0 2.5 3.0 3.5

Fig. 1  Characterizations of  WO3/BiVO4 heterojunction photoanodes. a XRD spectra of the prepared photoanodes  (WO3,  BiVO4, and  WO3/
BiVO4). Top‑view SEM images of b  WO3, c  WO3/BiVO4, and d cross‑sectional SEM image of  WO3/BiVO4 (scale bars, 2 μm). e HRTEM image 
of  WO3/BiVO4 (scale bar, 10 nm). f UV–Vis spectra of the prepared materials. The inset shows Tauc’s plot analysis. g Band structure of  WO3 
and  BiVO4. h High‑resolution XPS curves of photoanodes at the W 4f edge



Nano‑Micro Lett.           (2020) 12:88  Page 5 of 10    88 

1 3

the  WO3, which is beneficial for the transfer of the photo‑
generated holes, thus reducing the recombination of the 
photo‑generated electron–hole pairs, and ultimately the per‑
formance can thus be boosted by the heterostructure of  WO3/
BiVO4 [36–38]. The XPS spectra of  WO3 and  WO3/BiVO4 
photoanodes at the W 4f edge show that the two obvious 
peaks of 35.2 and 37.3 eV in both samples could be regarded 
as W 4f7/2 and W 4f5/2 of  W6+, respectively (Fig. 1f) [39, 40]. 
There is 0.1 eV offset here, which may be due to the forma‑
tion of  WO3/BiVO4 heterojunction [41]. The detailed XPS 
analysis of the  WO3,  BiVO4, and  WO3/BiVO4 photoanodes 
is shown in Fig. S2.

The photoelectrochemical performances of  WO3/BiVO4 
photoanodes are demonstrated using a three‑electrode cell, 
as shown in Fig. 2. Figure 2a exhibits the Mott–Schottky 
plots of the photoanodes, and the charge carrier densities 
of  WO3/BiVO4 and  BiVO4 can be calculated as 6.81 × 1023 
and 7.30 × 1019 cm−3, respectively, by the slope of the cor‑
responding curves in figure (Supporting Note S2) [42]. 

Compared with the individual  BiVO4, the  WO3/BiVO4 het‑
erojunction photoanode has the higher carrier density, which 
is beneficial for improving the performance to some extent. 
Furthermore, EIS spectra of  WO3,  BiVO4, and  WO3/BiVO4 
photoanodes were measured under simulated solar light 
illumination (Fig. 2b). It is discovered that the  WO3/BiVO4 
heterojunction photoanode has the minimum arc diameter, 
compared with those of  WO3 and  BiVO4 samples, confirm‑
ing its best charge transfer capacity for water splitting [43]. 
Figure S3 shows the equivalent circuit of EIS spectra test 
and associated parameters [44]. From the parameters of 
equivalent circuit elements in the table, we can find that 
the Rct of  WO3/BiVO4 heterojunction is obviously less than 
that of original  WO3 and  BiVO4 photoanodes. It shows that 
heterojunction can effectively reduce the transfer resistance 
of photo‑generated holes from electrode surface into elec‑
trolyte solution, which can be attributed to the formation of 
 WO3/BiVO4 heterojunction with a favourable band position 
to accelerate the charge separation, and then the oxidation 
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reaction of water on  WO3 and  BiVO4 photoanode surface 
is accelerated, and ultimately improve the photocatalytic 
performance [45]. The J–V curves of the photoelectrodes 
were obtained in phosphate buffer (0.5 M, pH = 7) includ‑
ing  Na2SO3 (1 M) as hole scavenger under visible‑light 
irradiation (Fig. 2c). The enlarged image of the potential 
(0.8–1.8 V vs. RHE) is shown in the inset of Fig. 2c. The 
photocurrent of the  WO3/BiVO4 heterojunction electrode is 
higher than that for the individual  WO3 and  BiVO4 elec‑
trodes. In particular, the photocurrent of the  WO3/BiVO4 
sample attains 5.24 mA cm−2 at 1.23 V versus RHE, which 
is seven times more than that of the  WO3 and twice more 
than that of the  BiVO4, respectively. Notably, the current 
density under illumination is higher than that in the dark all 
the time from 0.6 to 1.6 V versus RHE, while the dark cur‑
rents are almost zero in that region (Fig. S6). Furthermore, 
the photocurrent of  WO3/BiVO4 electrodes can remain sta‑
ble over 3 h (Fig. 2d). Even after 6 h, only a minimal loss 
in photocurrent density can be observed, indicating good 
photoelectrochemical stability (Fig. S7).

The mechanical energy harvester, RD‑TENG, is another 
important component of the self‑powered PEC water‑
splitting system, as shown in Fig. 3. A RD‑TENG with the 

multilayered structure consists of a rotator with disc shape 
and a matching stator (Fig. 3a, b). Two acrylic sheets were 
attached to the print circuit board (PCB) to serve as the sup‑
porting substrates. The copper film (central angle 1.5° and 
thickness 70 μm) works as a triboelectrification layer; mean‑
while the PTFE film is used as the other triboelectrification 
layer. The SEM image shows the nanowires with a length 
of ~ 1 µm and a diameter of ~ 100 nm grown on the PTFE 
surface. The coupling effects of triboelectrification and elec‑
trostatic induction are the basic mechanism of RD‑TENG 
(Fig. 3c) [46–49]. Due to different triboelectric polarities of 
the two triboelectrification layers, after a period of rotation, 
the copper surface and the PTFE surface will generate posi‑
tive and negative electric charges, respectively. The initial 
state and the final state are deemed to be the states where the 
rotator corresponds to the left electrode and the right elec‑
trode. The process of the rotator spins from the initial state 
to the final state is defined as the intermediate state. Once the 
rotation starts, the surfaces of Cu and the PTFE will possess 
equal amount of negative and positive charges. After that, 
a potential difference will be produced between these two 
electrodes, and then a reverse current will be produced in 
the circuit until reaching the final state. As shown in Fig. 3d, 
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the output characteristics of the RD‑TENG under different 
speeds between 60 and 140 rpm have been measured. Under 
various rotation speeds, the value of Voc is kept at ~ 230 V 
without obvious change, and Isc increases as the speed raises, 
and the peak current reaches 0.12 mA at 140 rpm. After 
the transformation by a transformer, the output parameters 
of the RD‑TENG, mainly Voc and Isc, rise simultaneously 
with increasing the speed of rotation. The peak voltage and 
corresponding peak current increase to ~ 11 V and 1.6 mA, 
respectively, at the speed of 140 rpm (Fig. 3e).

In order to illustrate the potential applications of the 
PEC hydrogen production system based on  WO3/BiVO4 
photoanode, we demonstrated a hybridized mechani‑
cal and solar energy‑driven hydrogen production system, 
as shown in Fig. 4. The whole system consists of a RD‑
TENG, a transformer, a rectifier, the electrolytes, cathode 
and anode (Fig. 4a). Its equivalent circuit can be found in 
Fig. S4. As for electrolytic cell, a phosphate buffer (0.5 M, 
pH = 7) including  Na2SO3 solution (1 M) as hole scavenger 
was selected as the electrolytes, a Pt electrode was used as 
the cathode, and the  WO3/BiVO4 heterojunction photoanode 

was utilized as the anode. The Pt electrode was inserted into 
a  H2 collection tube, where the  H2 collection tube was fully 
filled with electrolytes, and then partly inserted into the 
electrolyser. According to the electrolysis effect, the PEC 
process occurred and hydrogen bubbles were produced at 
the cathode. Figure 4b demonstrates the trend of current 
of the self‑powered hydrogen production system from 60 
to 140 rpm under darkness or illumination. Obviously, the 
peak current has a significant increase after illumination. 
In addition, the peak photocurrent and the peak dark cur‑
rent exhibit the similar tendency with the increase in rota‑
tion speeds. However, the peak current sharply enhances 
to 0.1 mA at 60 rpm, while the current is almost zero in 
the dark. The generation of hydrogen will only take place 
under the light condition and hardly perform under darkness. 
When the rotating speed exceeds 130 rpm, the peak current 
is same in both illumination and dark conditions (see the 
illustration in Fig. 4c). Moreover, the peak voltage (equal to 
or greater than 1.61 V) is sufficient for directly electrolyz‑
ing water (Fig. S5) [50]; the peak current and peak voltage 
in darkness or under illumination were measured at various 
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rotation speeds simultaneously (Fig. 4c). The peak current 
rises obviously along with the increase in the peak voltage, 
no matter in the light or in the dark condition. This result 
agrees with the trend of the J–V curve measured by the elec‑
trochemical workstation shown in Fig. 2c. To evaluate the  H2 
evolution characteristics of the self‑powered PEC hydrogen 
generation system with electricity supplied by RD‑TENG, 
a  H2 collection tube was used to collect hydrogen, as shown 
in Fig. 4d. Figure 4e illustrates the optical images of the  H2 
collection tube varying with time when the rotating speed of 
the RD‑TENG is 160 rpm. The volume of produced hydro‑
gen gradually increases with increasing time, and an obvious 
dropping process of liquid level in the tube could be present. 
At the same time, distinct and continuous  H2 bubbles were 
observed on the Pt electrode. The detailed dynamic water‑
splitting process can be intuitively seen in Supporting Movie 
S1. Furthermore, hydrogen evolution rate at four various 
speeds in darkness or under illumination is plotted in Fig. 4f. 
Particularly, at 160 rpm, the  H2 generation rates are up to 
5.45 μL min−1 under dark, and 7.27 μL min−1 under illumi‑
nation, respectively. The corresponding energy conversion 
efficiency is calculated to be 2.43% and 2.59%, respectively 
(Supporting Note S3). Due to the peak output characteris‑
tics, the voltage output of RD‑TENG does not always keep 
at the peak value. At these low voltages, PEC water split‑
ting plays a leading role and the sunlight effect cannot be 
ignored. Thus, there are still significant differences between 
dark and illumination for the hydrogen generation rate.

4  Conclusions

The  WO3/BiVO4 heterojunction was prepared as a photo‑
anode to generate  H2 in a TENG‑driven self‑powered PEC 
water‑splitting system. A RD‑TENG furnished this system 
with external bias, and then simultaneously or separately 
converted mechanical energy and solar energy into hydrogen 
energy. When the rotation rate is 60 rpm, the peak photocur‑
rent is 0.1 mA, the process of hydrogen production only hap‑
pens under illumination conditions. When the rotation speed 
surpasses 130 rpm, the direct electrolysis of water is almost 
simultaneous with photoelectrocatalysis of water. The  H2 
production rates are quickly lifted to 5.45 and 7.27 μL min−1 
at 160 rpm under dark and illumination, respectively. The 
corresponding energy conversion efficiency is calculated 
to be 2.43% and 2.59%, respectively. The heterojunction 

material is a benefit for the transfer and transmission of the 
photo‑generated holes, thereby effectively lowering the com‑
posite of photo‑generated electron–hole pairs. Understand‑
ably, the modification of photoanode material enables to 
boost the energy conversion efficiency in such a hybridized 
mechanical and solar energy‑driven self‑powered hydrogen 
production system.
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