Supporting Information for

Heterojunction Incorporating Perovskite and Microporous

Metal-Organic Framework Nanocrystals for Efficient and Stable

Solar Cells

Xuesong Zhou¹, Lele Qiu¹, Ruiqing Fan^{1, *}, Jian Zhang¹, Sue Hao¹, Yulin Yang^{1, *}

¹MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China

*Corresponding authors. E-mail: <u>fanruiqing@hit.edu.cn (</u>Ruiqing Fan), <u>ylyang@hit.edu.cn (</u>Yulin Yang)

Supplementary Figures

Fig. S1 Indium octahedral representation of In-BTC 3D framework along the *c*-axis, showing the 18-membered hexagonal ring-based infinite 2D layers (In2 and In3 octahedrons: yellow and blue, respectively) linked to the isolated μ_3 -oxo-centred trinuclear units (In1 octahedron: red) through the [btc]³⁻ ligands. Spheres are located into each cavity for a better clarity of the volume.

Fig. S2 Coordination environment of (**a**) In1, (**b**) In2, and (**c**) In3. Polyhedral representation of infinite 2D layers on *ab* plane based on corner-shared In2 and In3, viewed along the (**d**) *b* and (**e**) *c* axes

Fig. S3 Representation of three different types of cavities observed in In-BTC structure. Spheres are located into each cavity for a better clarity of the volume. (**a**) The first cavity is delimited by three trinuclear units (In1, red), two hood-shaped units composed of In2/In3-centered octahedrons (yellow and blue), and six $[btc]^{3-}$ ligands. (**b**) The second one is situated between three trinuclear units on the *ab* plane and two trimeric units (six In3-centered octahedrons) along the *c* axis. (**c**) The third one is delimited by two trinuclear units along the *c* axis connected to the 18-membered ring on the *ab* plane *via* six $[btc]^{3-}$ ligands.

Fig. S4 UPS spectra of In-BTC nanocrystals

Fig. S5 Statistical distribution of the (a) V_{oc} , (b) J_{sc} , (c) *FF*, and (d) PCE for PSCs employing perovskite/In-BTC heterojunction with different addition concentrations of In-BTC nanocrystals

Fig. S6 Steady-state photo-current output at the maximum power point and corresponding power output for PSCs with the (**a**) optimal perovskite/In-BTC heterojunction (2.0 mg mL⁻¹) or (**b**) pristine perovskite. (**c**) IPCE spectra of the pristine and In-BTC-modified devices, and corresponding integrated J_{sc}

Fig. S7 (a) Transient photocurrent decay and (b) transient photovoltage decay for PSCs with pristine and In-BTC-modified perovskite films. The *J*-*V* curves of devices with (c) pristine and (d) In-BTC-modified perovskite films in the forward and reverse scanning directions

Fig. S8 EIS measurement spectra for the PSCs with pristine perovskite or perovskite/In-BTC heterojunction (2.0 mg mL⁻¹). (The inset is the equivalent electrical circuit for fitting the EIS data)

Fig. S9 SEM images of (**a**) pristine perovskite thin films and (**b**, **c**) perovskite/In-BTC heterojunction films with different addition concentrations of In-BTC nanocrystals

Fig. S10 SEM-EDS images of optimal perovskite/In-BTC heterojunction film (2.0 mg mL⁻¹)

Fig. S11 (a) UV-vis absorption and (b) PL emission spectra of perovskite/In-BTC heterojunction films with different addition concentrations of In-BTC nanocrystals. (The UV-vis absorption curves corresponding 0.5, 1.0, and 4.0 mg mL⁻¹ are selectively hidden for a clearer resolution)

Fig. S12 Time-resolved photoluminescence (TRPL) spectra of perovskite/In-BTC heterojunction films with different addition concentrations of In-BTC nanocrystals

Fig. S13 Normalized PCE of corresponding devices for different storage time in air (25 °C and RH: ~65%)