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HIGHLIGHTS

• A 2.4 V high-voltage flexible aqueous ZIB was fabricated, and superiors performances were achieved: extremely flat charging/discharg-
ing voltage plateaus (1.9/1.8 V), the smallest plateau voltage gap of 0.1 V, high energy density of 120 Wh kg−1, high power density of 
3700 W kg−1, and excellent rate capability of 25 C.

• The battery posed application potential in wearable electronics with extreme safety against tough destructions including hammering, 
sewing, punching, and soaking.

ABSTRACT Flexible rechargeable aqueous zinc-ion batteries (ZIBs) 
have attracted extensive attentions in the energy storage field due to 
their high safety, environmental friendliness, and outstanding electro-
chemical performance while the exploration of high-voltage aqueous 
ZIBs with excellent rate capability is still a great challenge for the 
further application them in flexible and wearable electronics. Herein, 
we fabricated a 2.4 V high-voltage flexible aqueous ZIB, being among 
the highest voltage reported in aqueous ZIBs. Moreover, it exhibits 
extremely flat charging/discharging voltage platforms and the dropout 
voltage is only 0.1 V, which is the smallest gap in all aqueous batteries 
to our best knowledge. Furthermore, the prepared ZIB performs high 
rate capability of 25 C and energy density of 120 Wh kg−1 and exhibits 
excellent safety under various destructive conditions including hammering, sewing, punching, and soaking. These extraordinary results 
indicate the great application potential of our high-voltage flexible aqueous ZIB in wearable electronics.
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1 Introduction

With the increasing demand for flexible electronic devices 
such as smart bracelet, flexible sensor, and smart clothing, 
more stringent requirements are raised for the energy storage 
devices including high voltage, high energy density, environ-
mental friendliness, favorable mechanical property, etc. [1–5]. 
Although commercial lithium-ion batteries are the mainstream 
power source in the energy storage market, their visible defects 
such as the restrictive lithium resources, complicated assembly 
process, and especially for the toxic organic electrolytes, pre-
vent their further wide application in the smart and wearable 
electronics [6–11]. In this regard, aqueous rechargeable zinc-
based batteries (ZIBs) possess the overwhelming advantages 
in terms of unexceptionable safety and non-toxicity feature. 
Moreover, zinc was regarded as an ideal anode for aqueous 
metal ion batteries because of its low potential (− 0.78 V vs. 
SHE) and high theoretical capacity of 820 mAh g−1 [12, 13]. 
However, the output voltage of ZIBs was still far from satisfac-
tory since the voltage of the most common zinc–manganese 
battery is not higher than 1.5 V, which was mainly attributed 
to the lack of high-voltage cathode material and narrow elec-
trochemical stability window of liquid aqueous electrolyte for 
the high valence and small radius of zinc ion [14, 15]. In this 
regard, exploitation of high-voltage ZIBs with appropriate 
cathode material and electrolyte system is imperative to fulfill 
the power requirement for various wearable electronics.

In addition, there are two vitally important issues that have 
been ignored in many aqueous battery reports: One is the sta-
bility of charging and discharging platform, and the other is 
the dropout voltage between charging and discharging plat-
form. The former is critical to the power output and energy 
density for energy storage device, while the latter determines 
the energy efficiency of the battery [16–19]. However, most 
of the reported aqueous batteries, which have no visible plat-
form for charging and discharging, present constantly changing 
voltage and even display similar triangular curves to the super-
capacitors [20, 21]. And in these very few aqueous batteries 
possessing charge/discharge platforms (such as Zn//MnO2 and 
Zn//Ag), the dropout voltage is obviously higher than 0.1 V, 
followed their relatively low voltage and high cost of noble 
metal (Ag) as well [22, 23]. Thus, the exploration of ZIBs 
with super-flat platform, 0.1 V dropout voltage, and low cost 
is extremely appealing for the further widespread application 
of high-voltage ZIBs in high power electronics.

Inspired by ultra-high ionic conductivity of gelatin-g-PAM 
gel electrolyte, minor polarization open-framework structure 
of zinc hexacyanoferrate (ZnHCF) and low potential of zinc 
[14, 24], a flexible aqueous Zn-ion full battery was fabricated 
here based on  Zn2+ intercalation and deintercalation with 
2.4 V high voltage, super-flat platform, and dinky 0.1 V drop-
out voltage for charging/discharging. To the best of our knowl-
edge, this high voltage, extremely flat platform, tiny dropout of 
ZIB in aqueous system is rarely reported. Moreover, the ZIB in 
our work performs excellent rate capability of 25 C and energy 
density of 120 Wh kg−1. Batteries light up long light strips and 
demonstrate extraordinary security against various destruction 
including hammering, stitching, punching and soaking, posing 
great application prospects in the next-generation wearable and 
smart electronic devices.

2  Experimental Section

2.1  Synthesis of Polyelectrolyte

The hierarchical polymer electrolyte (HPE) was synthesized 
by in situ free radical polymerization. Detailedly, 7.27 g 
zinc trifluoromethanesulfonate (Zn(CF3SO3)2, 98%, Mack-
lin) was fully dissolved into 20 mL DI water at room tem-
perature. Then, 2 g gelatin (photographic grade, Aladdin) 
and 30 mg potassium persulfate (KPS) were added in turn 
to the solution, which were stirred slowly at 80 °C to accel-
erate dissolution and avoid bubbles. After cooling down to 
40 °C, 3 g acrylamide (AM, AR grade, Macklin) and 3.5 mg 
N,N′-methylenebisacrylamide (BIS, CP grade, Aladdin) were 
added into the mixture solution ordinally [14]. After stirring 
2 h for grafting reaction, the above solution was injected into 
a mold with a tiled polyester membrane, which was trans-
ferred into an oven at 60 °C for 2–3 h. Finally, a translucent 
1 M Zn(CF3SO3)2 HPE with grafted structure was obtained. 
As a contrast, gelatin electrolyte (GE) film was obtained 
by the same way except for the addition of acrylamide and 
N,N′-methylenebisacrylamide.

2.2  Fabrication of Electrodes and Battery Assembly

The cathode material was prepared by high-temperature 
coprecipitation. Typically, 100 mL of 0.1 M  ZnSO4 and 
0.05 M  K3Fe(CN)6 mixed aqueous solution was added drop-
wisely into 50 mL DI water at 60 °C [25]. Titration was kept 
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at a constant rate until precipitation was obtained. After stir-
ring strongly for 1 h to allow sufficient reaction, the product 
was rinsed with DI water and centrifuged at 6000 rpm for 
2 min for several times to remove the residues. Then, the 
washed sediment was placed in a vacuum oven and dried at 
70 °C for 24 h to obtain the cathode active material ZnHCF. 
At last, the active material (ZnHCF), conductive agent (car-
bon nanotubes) and binder (polyvinylidene fluoride, PVDF) 
were mixed at a mass ratio of 8:1:1 with moderate N-methyl 
pyrrolidone (NMP) as solvent, vigorously milled for more 
than 5 h and painted onto the carbon cloth for 10 h drying 
at 60 °C.

For the Zn anode, the carbon cloth was placed into etha-
nol under ultrasonic operation for more than 15 min before 
electrodeposition. Then, the hydrophilic carbon cloth was 
inserted into 1 M zinc sulfate  (ZnSO4) solution as the work-
ing electrode. Thus, a Zn anode was acquired by anodic elec-
trodeposition at − 0.8 V in the two-electrode system with 
fairly sized Zn sheet as cathode.

For the full cell assembly, the as-prepared cathode, gel 
electrolyte, and Zn anode were packed together under the 
ambient condition to form a compacted and sandwiched 
structure for electrochemical performance and security tests.

2.3  Materials Characterization and Electrochemical 
Performance Test

The structural information of the as-prepared electrode mate-
rials was collected by X-ray diffraction [XRD, Bruker D2 
Phaser diffractometer with Cu Kα irradiation (λ = 1.54 Å)] 
and Raman (Renishaw Invia Reflex system (UK), with an 
excitation wavelength of 514 nm). The morphology of pow-
der active samples and deposited zinc was characterized by 
field scanning electron microscope (FE-SEM, FEI/Philips 
XL30). The polymer structure analysis was employed by 
Fourier transform infrared spectroscopy (FTIR). For electro-
chemical testing, electrochemical impedance spectroscopy 
(10 kHz to 0.01 Hz), cyclic voltammetry, and galvanostatic 
charge/discharge measurements in gradient current density 
were obtained via an electrochemical workstation (CHI 
760e). The electrochemical cycling test was carried out by 
battery testing system (LANHE, CT2001A).

3  Results and Discussion

The structure of the obtained cathode material was ana-
lyzed by XRD as shown in Fig. 1a. In the XRD pattern, 
all the diffraction peaks are well indexed to the rhom-
bohedral  Zn3[Fe(CN)6]2 (ZnHCF, JCPDS No. 38-0688) 
with three main diffraction peaks located around 16.2°, 
19.5°, and 21.5°, which belong to the crystal plane dif-
fraction of (113), (024), and (116), respectively. To make 
a clear understanding on the crystal structure of ZnHCF, 
the atomic framework configuration model was given in 
the inset in Fig. 1a. The Prussian blue analogs ZnHCF is 
a face-centered cubic framework with the transition metal 
cations Zn and Fe coordinated by CN ligands [26–29]. 
The formed 3D framework contains large channels and 
interstitial sites to allow facile mobility of free  Zn2+ ions. 
Further, the Raman spectrum was utilized to investigate 
valence state of transition metal Fe cation as shown in Fig. 
S1. The wavenumber peak of ν(CN) located at 2201 cm−1 
corresponds to the stretching vibration mode of the cya-
nide  CN− that coordinated to Fe(III), which is in good 
accordance with the XRD analysis [30]. From the SEM 
image of ZnHCF (Fig. 1b), we can find that the ZnHCF 
grain exhibits rhombohedral morphology. Meanwhile, the 
XRD pattern and SEM image of electrodeposited zinc are 
displayed in Fig. 1c, d. As shown in Fig. 1c, the XRD 
peaks of Zn match well with the standard diffraction peaks 
of Zn metal (JCPDS No. 04-0831) [1]. From Fig. 1d, it 
can be seen that the Zn was uniformly distributed and 
highly aligned on the carbon cloth substrate. A small area 
is selected for higher-magnification enlargement, and the 
clear image conveys a sheetlike laminated structure per-
pendicular to the surface of the substrate which maximizes 
the area of zinc and provides a large specific surface.

Meanwhile, the synthesis route schematic diagram of 
HPE is provided in Fig. 2a. Herein, the  K2S2O8 was the 
initiator, and BIS was the grafting agent with AM mono-
mer to form branch on gelatin chain. By this way, a highly 
cross-linked HPE hydrogel polymer film was obtained. 
FTIR (Fig. 2b) is used to certify the gelatin-g-PAM struc-
ture of HPE. There exist several distinct absorption peaks 
in the spectrum including 3410 cm−1 (symmetric N–H 
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stretching vibration) and 3200 cm−1 (antisymmetric N–H 
stretching vibration) of primary amine, 1654 cm−1 (amide 
I, C=O stretching vibration), 1458 cm−1 (C–N stretching 
vibration), 1110 cm−1, and 620 cm−1 (amino oscillating 
peak), respectively [31]. The abundance of amide bonds 
contributes to the excellent water retention and outstand-
ing viscosity which causes the electrode to stick tightly to 
the electrolyte. Meanwhile, the ionic conductivity of the 
gel electrolyte was calculated based on EIS analysis, and 
high ionic conductivities of 2.04 × 10−3 S cm−1 for HPE 
and 1.09 × 10−3 S cm−1 for GE were obtained as indicated 
in Fig. 2c. We cut the polymer electrolyte with a block 
area of 1 × 1 cm2 followed clamped by stainless steel plate 
to test impedance, which was fully compact and stood for 
a while to exhaust the air in the gap while stabilizing the 
system. Then, we measured its thickness, obtained the 

resistance from figure, and calculated it according to the 
formula σ = l/SR (σ is the ionic conductivity; l is thickness; 
S is the contact area of the electrolyte; R is the resist-
ance). Comparison data of several common zinc-ion gel 
electrolytes are displayed in Table S1 [14]. As an intui-
tive demonstration of their good ionic conductivity, the 
HPE electrolyte could be connected in an electronic circuit 
to light up a LED bulb as shown in the inset in Fig. 2c. 
Thus, a flexible aqueous rechargeable zinc-ion battery 
was acquired with the sandwiched structure as shown in 
Fig. 2d, which was assembled by Zn as anode, ZnHCF as 
cathode, and HPE as electrolyte, respectively.

A sequence of measurements was performed to explore 
the electrochemical behaviors of ZIB. The cyclic voltam-
metry profiles between the voltage window of 0.8 and 2.4 V 
at different scan rates are provided in Fig. 3a. As shown, 
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a pair of strong redox peaks located around 1.6/2.2 V was 
observed, which was correlated with the conversion of 
 [FeIII(CN)6]3−↔[FeII(CN)6]4 and Zn ↔  Zn2+. During the 
cathodic process, the distinct reduction peak around 1.57 V 
(scan rate of 10 mV s−1) was related to the transformation of 
 [FeIII(CN)6]3− to  [FeII(CN)6]4− and the Zn dissolution. While 
during the anodic process, the oxidization peak at 2.19 V 
was accompanied by the oxidation of  FeII to  FeIII and the 
precipitation of  Zn2+ to Zn metal. The electrochemical reac-
tion equation of the full ZIB could be illustrated as Eqs. (1) 
and (2) [5, 32–34]:

Figure 3b exhibits the galvanostatic charge/discharge pro-
files in the voltage window of 0.8–2.4 V at various rates 
ranging from 2.5 to 25 C. Excitingly, it displayed extremely 
high and flat charge/discharge plateaus located around 
1.9/1.8 V with the plateau voltage difference of merely 0.1 V 
at 2.5 C. It is worthy to mention that the excellent voltage 
plateau performance with high output voltage is the best of 
all aqueous ZIBs reported to our best knowledge. Most of 
the reported aqueous batteries have no visible platform for 
charging/discharging and even exhibit triangular curves like 
super-capacitors [35–37]. Furthermore, in these very few 
aqueous batteries, which possess relatively stable charge/
discharge platforms such as Zn//MnO2 and Zn//Ag, their 
average platform voltage is no more than 1.7 V, while the 
dropout voltage is obviously higher than 0.1 V [22, 23]. The 
detailed comparison of various ZIBs reported in previous 
works is presented in Fig. 3c, in which many other ZIBs 
with low voltage and without charge/discharge plateaus 
are not included [20, 21, 35–49]. Obviously, the discharg-
ing plateau voltage of our ZIB is the highest among ZIBs, 
such as Zn//LixV3O8 (0.7 V), Zn//KxNi[Fe(CN)6]y (1.17 V), 
Zn//α-MnO2(a) (1.23 V), Zn//β-MnO2 (1.1 V), Zn//MnO2 
(1.3 V), Zn//α-MnO2(b) (1.34 V), Zn//Mn3O4 (1.33 V), Zn//
Mn2O3 (1.34 V), Zn//Ag (1.54 V), and Zn//Na3V2(PO4)F3 
(1.6 V). The high ionic conductivity of PAM gel electrolyte 
and the excellent (de)intercalation ability of ZnHCF con-
tribute greatly to the 1.8 V high discharging platform of our 
battery. Moreover, our charging/discharging plateau volt-
age gap of 0.1 V is the lowest, e.g., Zn//LixV3O8 (0.25 V), 
Zn//KxNi[Fe(CN)6]y (0.25  V), Zn//α-MnO2(a) (0.3  V), 

(1)2
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Zn//β-MnO2 (0.45 V), Zn//MnO2 (0.25 V), Zn//α-MnO2(b) 
(0.21 V), Zn//Mn3O4 (0.29 V), Zn//Mn2O3 (0.34 V), Zn//Ag 
(0.1 V), Zn//Na3V2(PO4)F3 (0.1 V). The small electrochemi-
cal polarization during charge/discharge process is mainly 
benefited from the superior ionic conductivity of HPE as 
well as the favorable ionic transport pathway in the open 
framework in the ZnHCF cathode, which contributes to the 
excellent electrochemical performance of our ZIB. We inves-
tigated the effect in terms of various zinc salts. Three dif-
ferent zinc salts (Zn(CF3SO3)2,  ZnSO4, and Zn(CH3COO)2) 
were selected to analyze the nature of electrolyte under the 
same concentration and electrode parameters. CV and GCD 
were carried in each solution shown in Figs. S2 and S3. 
From the CV curves, Zn(CF3SO3)2 presented the highest dis-
charge voltage than  ZnSO4 and Zn(CH3COO)2. GCD plots 
gave the further demonstration for platform performance and 
capacity. Combined with ionic conductivity data (Table S1), 
in ZnHCF crystals, whether the velocity of  Zn2+ interca-
lation/extercalation can keep up with the change of  Fe2+ 
valence mainly determines the final electrochemical per-
formance. In order to explore the most suitable electrolyte 
concentration for better performance, an inquiry experiment 
was designed and the result is shown in Fig. S4. Consider-
ing the solubility of Zn(CF3SO3)2 is 3.7 M, we selected four 
concentration gradients (0.5, 1, 2.5, and 3.7 M) to perform 
CV tests at 10 mV s−1 under as same battery conditions 
as possible. The results show that 1 M is the most suitable 
electrolyte concentration. A significant large polarization 
emerges at 0.5 M; the voltage performance at 2.5 M is still 
not ideal; 3.7 M is the closest to 1 M, but the performance 
in the high-voltage range is not as good as 1 M, showing a 
clear oxygen evolution trend.

Additionally, the rate capability is revealed in 
Fig. 4a under ten gradient current densities from 200 to 
2000 mA g−1. The ZIBs could deliver a specific capacity 
of 67, 62, 57, 53, 50, 47, 44, 42, and 40 mAh g−1 at 2.5, 5, 
7.5, 10, 12.5, 15, 17.5, 20, and 22.5 C rate, respectively. At 
the minimum current density 2.5 C, the sufficient electrode 
response makes the capacity of the battery relatively high, 
accounting for 77.9% of the calculated theoretical capac-
ity (86 mAh g−1). A high capacity of 38 mAh g−1 could 
be maintained even under the high rate of 25 C. When the 
current rate returned back to 2.5 C, the capacity retention as 
high as 96.8% was exhibited with the coulombic efficiency 
over 97% during cycles, further implying the excellent rate 
capability of the ZIB. Besides, the long cyclic stability was 
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pictured in Fig. 4b at the current rate of 2.5 C, which dis-
played 80% capacity retention after 260 cycles. Compared 
with previous studies Zn//ZnSO4//Zn3V2O7(OH)2·2H2O 
(68% capacity retention after 300 cycles) and Zn//ZnSO4//
Zn3[Fe(CN)6]2 (80% capacity retention after 200 cycles), 
our ZIB shows distinctly better cycling stability [30, 50]. In 
spite of this, they are still a big weakness and not as good as 
Mn-based and V-based zinc-ion batteries. Benefited by the 
high operating voltage, our ZIB delivers high energy density 
of 120 Wh kg−1 and high power density of 3700 W kg−1, 
respectively, which are much superior than many other bat-
tery systems supported by previous references, including 
Zn//NiCoO, Gr//MnO2, etc., as described in the diagram 
in Fig. 4c [24, 51–67]. In general, our high-voltage ZIB 
exhibits superior charge/discharge voltage plateaus and high 

energy and power density, demonstrating great application 
prospect in flexible and wearable electronics.

Considering the harsh requirements of flexible and wear-
able electronics, various tough environments including 
hammering, sewing, punching, and soaking are simulated 
to investigate the electrochemical performance of our ZIB 
under destructive conditions. Nevertheless, batteries com-
posed of only electrode and electrolyte in a sandwich struc-
ture are also excellent in flexibility, and it can be bent freely 
even under a thick protective film in Fig. S5. In order to 
explore the effect of external forces, we continuously ham-
mered the battery to monitor its capacity variation (Fig. 5a). 
The capacity retention could reach 96.4% after five times 
of fierce hammering (the external force was estimated to 
be at least 26.3 kPa). Moreover, the ability to be sewable 
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is very essential for the wearable application as it is often 
used in the situation of integration with cloths. By using 
homely hand sewing, over 30 stitches were acted on the full 

battery and each pinhole is about 0.5 mm. The capacity was 
tested every ten shots which exhibits a rather high capacity 
retention of 94.6% after 30 stitches (Fig. 5b). Furthermore, 
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the artificial punching was adopted to investigate the resist-
ance against damage (Fig. 5c). We used a standard-sized 
puncher (d = 3 mm) to drill holes in the battery. A high 
capacity retention of 92.9% was obtained after three holes 
were punched. In addition to hammering, sewing, and 
punching, soaking is also a common application scenario for 
wearable electronics like washing, rain, sweat, etc. Without 
any waterproof treatments, we sewed the battery, soaked it 
into the water, and took it out every 10 min for testing. As 
shown in Fig. 5d, the capacity remained 84.1% after 30 min 
of soaking. These results further verified that our flexible 
ZIB exhibits excellent tolerance against demanding situa-
tion for wearable devices. Furthermore, a ZIB with size of 
4 × 6 cm2 could easily light up a HIT pattern comprised of 
15 LEDs in parallel. Meanwhile, several batteries connected 
and paralleled together can brighten the long luminous light 
strip laid in shoes and clothes as shown in Fig. 5e. To make 
a more intuitive expression of the high-voltage ZIB, we pro-
vided a visual contrast consisted of a standard voltaic battery 
(size: 1.4 × 5 cm2; mass: 25 g) and our ZIB (size: 1 × 4 cm2; 
mass: 0.4 g) in Fig. 5f. The small ZIB can easily light the 
LED bulb while the disposable battery failed, which fulfills 
the requirements of lightweight and high voltage for flex-
ible and wearable devices. These successful lightings further 
confirm the potential application of our high voltage, high 
energy density, and safe ZIB in future wearable and smart 
electronics.

4  Conclusions

In summary, we develop a 2.4 V high-voltage flexible aque-
ous Zn//ZnHCF battery which delivers high rate capability 
and excellent platform performance. The smallest dropout 
voltage of 0.1 V for the extremely flat charging/discharging 
voltage platforms is realized unprecedentedly to our best 
knowledge. Meanwhile, the great energy density and power 
density of 120 Wh kg−1 and 3700 W kg−1, respectively, with 
25 C high rate capability of the ZIB in our work have con-
siderable application prospect in energy fields. Furthermore, 
it is demonstrated to be reliable energy storage which pos-
sesses excellent safety and capacity retention under various 
destructive conditions, strongly demonstrating the promising 
application of our high-voltage flexible ZIB in future wear-
able and smart electronics.
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