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HIGHLIGHTS

• A framework nucleic acid delivery system was developed through self-assembly, which can deliver antisense oligonucleotides against 
multiple targets in bacterial cells.

• The ASOs-tFNAs (750 nM) was found to simultaneously inhibit the expression of gtfBCD, gbpB, and ftf, and significantly reduce the 
extracellular polysaccharide synthesis and biofilm thickness.

ABSTRACT Biofilm formation is responsible for 
numerous chronic infections and represents a serious 
health challenge. Bacteria and the extracellular poly-
saccharides (EPS) cause biofilms to become adherent, 
toxic, resistant to antibiotics, and ultimately difficult 
to remove. Inhibition of EPS synthesis can prevent the 
formation of bacterial biofilms, reduce their robustness, 
and promote removal. Here, we have developed a frame-
work nucleic acid delivery system with a tetrahedral 
configuration. It can easily access bacterial cells and 
functions by delivering antisense oligonucleotides that 
target specific genes. We designed antisense oligonu-
cleotide sequences with multiple targets based on con-
served regions of the VicK protein-binding site. Once 
delivered to bacterial cells, they significantly decreased EPS synthesis and biofilm thickness. Compared to existing approaches, this system 
is highly efficacious because it simultaneously reduces the expression of all targeted genes (gtfBCD, gbpB, ftf). We demonstrate a novel 
nucleic acid-based nanomaterial with multi-targeted inhibition that has great potential for the treatment of chronic infections caused by 
biofilms.
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1 Introduction

Biofilms represent structured bacterial communities 
attached to an extracellular matrix secreted by the bacteria 
on the surface of a living or inanimate body [1]. Bacteria 
are embedded in these extracellular matrices to protect 
themselves. Biofilms contain various biological macro-
molecules, such as extracellular polysaccharides (EPS) 
and nucleic acids. The EPS matrix enhances the adhesion 
of bacterial cells and promotes surface microbial accu-
mulation and cohesion, condensing dense cell aggregates 
and resulting in extremely structured and adherent bacte-
rial biofilms [2]. Therefore, bacteria that form biofilms 
are 500 to 5000 times more resistant to antibiotics than 
planktonic cells, including those that are normally sensi-
tive to antibiotics [3, 4]. There are three main reasons 
for such high drug resistance. First, the metabolic rate 
of bacteria proliferating within biofilms decreases due to 
competition for nutrients and space, which makes them 
less susceptible to growth-targeting antibiotic action [5]. 
Second, the protein and polysaccharide components in the 
EPS matrix can prevent or delay the penetration of anti-
biotics into biofilms, giving mature cells located deep in 
the matrix more time to develop resistance [5, 6]. Third, 
individual-resistant bacteria release antibiotic resistance 
factors, enabling the entire biofilm community to become 
resistant through a process known as passive resistance 
[7]. Resistance-related genes can be shared between dif-
ferent strains in biofilms by lateral gene transfer. These 
factors are also the main mechanism behind chronic infec-
tions, which constitute 60–80% of human infectious dis-
eases. Microbial biofilm formation is regarded as a major 
virulence factor for local chronic infections of the heart, 
lung tissue, skin, and oral cavity [1]. Together with aging 
of the population, diabetes, and the prevalence of obe-
sity [8], chronic infections have become a major public 
health issue. Consequently, addressing biofilm infection 
has become a key area of research direction. Given that 
traditional treatments, such as mechanical debridement, 
antibiotics, or biofilm destroyers, are insufficient against 
the biofilm’s self-protecting ability and strong toxicity, the 
only viable option is to prevent the early stages of biofilm 
formation [9, 10]. Biofilm formation is a dynamic process, 
in which bacteria secrete large amounts of extracellular 
polysaccharides during the early colonization and aggre-
gation steps. Therefore, EPS-related genes and proteins 

have become important targets for early intervention in 
biofilm formation [11].

Existing methods for combating biofilm infection 
include nanocoatings that inhibit adhesion, a combination 
of mechanical debridement and antibiotics, and liposomal 
nanoparticles for drug delivery [1, 6]. The recent rapid 
development of nanomaterials has sparked therapeutic 
strategies that selectively target biofilm matrix components 
or that introduce bacterial-specific ligands to increase the 
specificity of nanoparticles, thus improving efficacy and 
biocompatibility [12–14]. However, presently, the nano-
particles used are mostly liposomes or gold nanoparti-
cles. These nanoparticles have high cytotoxicity, affect 
the normal physiological activities of host cells, have low 
biocompatibility, and low editability [15, 16]. Recently, a 
framework nucleic acid (FNA) with a tetrahedral confor-
mation has been confirmed to possess anti-inflammatory 
and anti-oxidative properties and promote proliferation and 
differentiation of animal cells and the capacity to enter bac-
terial cells [16–18]. In particular, FNAs are highly editable 
and can function as carriers for nucleic acid drugs to enter 
cells [18–20]. Indeed, various such drugs, including aptam-
ers or cytosine-phosphate-guanine, have been designed for 
FNAs to provide anticancer or immunostimulatory activi-
ties [21–23].

Based on these factors, we have developed a new drug 
delivery system that targets biofilms. We designed a 
multi-targeting antisense nucleotide sequence to be car-
ried by FNAs into bacterial biofilms. The phosphorothio-
ated DNA and 2′ O-Me RNA on the sequence provided 
additional stability and increased its affinity for the target 
sequences [24, 25]. In this study, we selected the Strepto-
coccus mutans biofilm, which is related to the occurrence 
of various oral diseases [26]. Secretion of EPS in the early 
stages of S. mutans biofilm formation is regulated mainly 
by the glucosyltransferase gene family (gtfB, gtfC, gtfD) 
and the glucan-binding protein gbpB gene [27]. There-
fore, we targeted these genes. Senadheera et  al. dem-
onstrated that a VicRK signal transduction system in S. 
mutans biofilm affected gtfBCD, gbpB, and ftf (encoding 
an adhesion-associated protein) expression, biofilm for-
mation, and genetic development [28–31]. This occurs 
because the VicK protein binds to the highly conserved 
promoter region of the gtfBCD, gbpB, and ftf genes [27, 
32, 33]. Accordingly, the antisense complex sequence 
used here was based on this conserved sequence. We then 
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proceeded with the construction and characterization of 
this novel nucleic acid drug delivery system. The system 
proved to be more efficient and smarter than our previous 
design, achieving good inhibition during early formation 
of S. mutans biofilms, caused by reduced expression of 
the target genes and blocking of EPS production. To the 
best of our knowledge, this is the first report of FNAs 
acting as a drug delivery vehicle that successfully inhibits 
the formation of bacterial biofilms. It also confirms the 
vast potential of the system for the treatment of bacterial 
infections.

2  Experimental

2.1  Multi‑targeted Antisense Oligonucleotide  
Design

VicK proteins bind specifically to the gtfBCD, gbpB, 
and ftf promoter regions [30, 32]. Dubrace et  al. deter-
mined the VicK binding consensus sequence to be 
TGTWAHNNNNNTGTWAH (where W is A or T and H is 
A, T, or C) [34]. Based on this information, we designed the 
antisense oligonucleotide sequence DTWACANNNNND-
TAACA (where D is A, G, or T and W is A or T) to target 
the conserved sequences of the gtfBCD, gbpB, and ftf pro-
moter regions [32]. Because pure DNA or RNA is suscep-
tible to nuclease degradation, we designed a sequence of 
nested antisense oligonucleotides made of DNA and RNA, 
with DNA modified by phosphorothioate and RNA by 2′ 
O-Me [35–37].

2.2  Fabrication and Characterization

The tFNA was self-assembled from four different ssDNAs 
(denoted as S1, S2, S3, and S4) in accordance with previous 

studies (Table 1). Multi-targeted antisense oligonucleotides 
(ASOs) were linked to the 5′ of the S2 ssDNA to produce an 
ASOs-tetrahedral FNA (tFNA) delivery system [12, 37, 38]. 
Briefly, ASOs-tFNAs were assembled using an equimolar 
ratio of S1, ASOs-S2, S3, and S4. They were mixed in TM 
buffer, heated to 95 °C for 10 min, and cooled quickly to 
4 °C for 20 min [39, 40]. Finally, the ASOs-tFNA complex 
was purified by high-performance liquid chromatography 
[41].

To prove the successful synthesis of ASOs-tFNA, gel 
electrophoresis, atomic force microscopy (AFM) (DI Mul-
timode-VIII; Bruker Nano Inc., Billerica, MA, USA), and 
transmission electron microscopy (TEM) (Tecnai G2 F20 
S-TWIN; FEI, Hillsboro, OR, USA) were used to analyze 
its structure [20]. An 8% non-denaturing polyacrylamide 
gel electrophoresis in 1 × TAE buffer was run at 4 °C for 
about 1.5 h to measure the relative molecular weights of 
each ssDNA and two strands of ssDNA, as well as combi-
nations of three ssDNAs and ASOs-tFNA. The morphol-
ogy and approximate sizes of pure tFNA and ASOs-tFNA 
were confirmed by AFM and TEM. Briefly, 10 μL of ASOs-
tFNA was dropped onto freshly cleaved mica flakes, dried 
for 15 min, and measured by AFM [42]. Similarly, 5 μL of 
ASOs-tFNA was dripped on copper grids and the sample 
was dried under infrared radiation for 20 min prior to TEM 
observation. Then, hydrodynamic sizes and zeta potentials 
were analyzed with a Zetasizer Nano ZS instrument (Mal-
vern Instrument Ltd., Malvern, UK). Each measurement was 
repeated three times [43].

2.3  Nucleic Acid Strands, Test Bacteria, and Growth 
Conditions

Nucleic acid strands used in the experiments were synthe-
sized and purified by TaKaRa (Dalian, China). S. mutans 

Table 1  Base sequence of each ssDNA

ssDNA Base sequence Direction

Cy5-S1 Cy5-ATT TAT CAC CCG CCA TAG TAG ACG TAT CAC CAG GCA GTT GAG ACG AAC ATT CCT AAG TCT GAA 5′ → 3′
S1 ATT TAT CAC CCG CCA TAG TAG ACG TAT CAC CAG GCA GTT GAG ACG AAC ATT CCT AAG TCT GAA 5′ → 3′
S2 ACA TGC GAG GGT CCA ATA CCG ACG ATT ACA GCT TGC TAC ACG ATT CAG ACT TAG GAA TGT TCG 5′ → 3′
S3 ACT ACT ATG GCG GGT GAT AAA ACG TGT AGC AAG CTG TAA TCG ACG GGA AGA GCA TGC CCA TCC 5′ → 3′
S4 ACG GTA TTG GAC CCT CGC ATG ACT CAA CTG CCT GGT GAT ACG AGG ATG GGC ATG CTC TTC CCG 5′ → 3′
ASO DTWACANNNNNDTAACA 5′ → 3′
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UA159 was commercially obtained from the American 
Type Culture Collection (Manassas, VA, USA). The bac-
teria were grown on brain heart infusion (BHI) medium 
(Difco, Sparks, MD, USA) in an Incubator (Thermo 
Fisher Scientific, Waltham, MA, USA) at 37 °C and 5% 
 CO2. For all the experiments, bacteria were diluted to 
1 × 106 CFU mL−1 in BHI medium. For bacterial biofilm 
growth, 1% sucrose (Sigma, St. Louis, MO, USA) was 
added to BHI medium (BHIS). To ensure TM buffer had 
no impact on the experimental results; control groups and 
experimental groups contained the same concentration of 
TM buffer in each assay.

2.4  Uptake of FNA, ASOs, and ASOs‑tFNAs 
by Bacteria

To verify that ASOs-tFNAs successfully penetrated 
S. mutans biofilms, Cyanine-5 (Cy5)-tFNAs (500 or 
750 nM), Cy5-ASOs (500 or 750 nM), and Cy5-ASOs-
tFNAs (500 or 750 nM) were used to treat bacteria for 
12 h on BHI medium without sucrose. The strains were 
collected and washed three times with PBS (15,000 rpm, 
5 min). Each sample was resuspended in PBS in flow 
tubes, and each of these was subjected to flow cytomet-
ric analysis (FC500; Beckman-Coulter, Indianapolis, IN, 
USA) [12].

2.5  Planktonic Bacteria Growth Assay

The strains were grown from a single colony in BHI both 
until early log phase was achieved at an optical density at 
595 nm (OD595) of 0.2–0.3. After adjusting OD to a com-
mon value, bacteria were cultured in the presence of dif-
ferent concentrations of tFNAs and ASOs-tFNAs in BHI 
medium in a cell culture plate. An automated spectropho-
tometer (BioTek, Winooski, VT, USA) was used to measure 
planktonic bacterial growth, and OD595 readings were taken 
over a period of 24 h every 2 h, with plate shaking every 
30 min.

2.6  Biofilms Formation Assay

To test the inhibition of ASOs-tFNAs on biofilm forma-
tion, the experimental strains were inoculated into wells 

of a 96-well plate containing BHIS. Bacteria were treated 
with tFNAs, ASOs, or ASOs-tFNAs (500 or 750 nM) for 
24 and 48 h. Then, culture medium was removed out and 
cells were washed twice with PBS. Cells were fixed by 
adding 100 μL methanol into each well and incubating 
for 15 min; after that, excess liquid was removed out and 
the wells were dried naturally. Next, 0.1% crystal violet 
staining solution was added to each well, and the plates 
were placed at 20 °C for 5 min [44]. After the liquid was 
removed from the wells, the plates were dried in a drying 
oven. Finally, 100 µL acetic acid (33%) was added to each 
well and incubated at 37 °C for 30 min to dissolve the 
crystal violet solution. OD595 of the samples was taken 
with a microplate reader [44].

2.7  Microscopic Analysis of Bacterial Biofilms

An overnight culture of S. mutans was inoculated into BHIS 
with tFNA, ASOs, and ASOs-tFNAs (500 or 750 nM) and 
incubated on confocal plates for 24 h. We observed the 
architecture of bacterial biofilms by in situ labeling of S. 
mutans and EPS [45]. Alexa Fluor 647-labeled dextran 
conjugate (1 µM; Thermo Fisher Scientific) was added to 
BHIS medium before inoculation, and after incubation for 
24 h [46], the medium was removed and each sample was 
washed twice with sterile PBS to remove planktonic and 
loosely bound cells. Next, SYTO™ 9 dye (Thermo Fisher 
Scientific) was added at a 100:1 ratio to label the biofilms 
for 15 min. The architecture of bacterial biofilms was exam-
ined by confocal laser scanning microscopy (A1R MP+; 
Nikon, Tokyo, Japan). We used Z sections to record the 
thickness of the biofilms, at 1-µm intervals. All samples 
were scanned at five randomly selected positions [47]. 
Finally, the confocal slices were reconstructed into three-
dimensional images of the biofilms. We used COMSTAT 
image processing software to analyze the confocal image 
stacks and to calculate the biomass of EPS and bacterial 
cells [48].

2.8  Scanning Electron Microscopy (SEM)

The impact of ASOs-tFNAs on biofilm structure and the 
amount of EPS was observed by SEM (FEI). An overnight 
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culture of S. mutans was inoculated into a cell culture plate 
with glass coverslips, and BHIS medium was added. After 
1 day of incubation, samples were washed in sterile PBS 
to remove planktonic bacteria and loosely adherent cells. 
Each sample was fixed with 2.5% glutaraldehyde at 4 °C 
overnight. Then, samples were washed once with sterile PBS 
and dehydrated in an absolute ethanol series to maintain the 
morphology of bacterial cells. Each sample was coated with 
gold and observed by SEM.

2.9  Quantitative RT‑PCR

Quantitative RT-PCR was used to verify the multiple tar-
geting of ASOs-tFNAs. The expression of targeted genes 
was quantified by using 16S rRNA as a control gene [49]. 
The strains were grown in BHIS with tFNAs and ASOs-
tFNAs (750  nM) to late logarithmic phase. Then, the 
strains were harvested by centrifugation (4000 × g, 4 °C, 
10 min) and snap-frozen in TRIzol reagent (Thermo Fisher 
Scientific) until further use. Total RNA from each sample 
was extracted and purified with the RNeasy Mini Kit (Qia-
gen, Hilden, Germany) using a genomic DNA eliminator 
[12, 50]. The extracted RNA was dissolved in RNase-free 
water, and cDNA was prepared using a cDNA synthesis 
kit (TaKaRa, Dalian, China). Amplifications of all target 
mRNAs were performed by quantitative RT-PCR. The cor-
responding primer sets are listed in Table 2. The Livak 
method is used to calculate the relative expression of the 
target genes. In this experiment, the control group con-
tained tFNAs [40].

2.10  Statistical Analysis

We performed all experiments at least in quadruplicate 
and reproduced three separate times. Statistical analyses 
of the results were performed with Prism 6 (GraphPad 
software Inc., San Diego, CA, USA) by one-way ANOVA. 
*P < 0.05, **P < 0.01, and ***P < 0.001 indicated statisti-
cally significant differences.

3  Results and Discussion

3.1  Characterization of tFNAs

The tFNAs were self-assembled from four different ssD-
NAs. Each ssDNA had 63 bases and formed one of the four 
faces of the tFNA by binding to the corresponding region of 
the other chains [12, 38]. The tFNA carrying ASOs (ASOs-
tFNA) was constructed by linking ASOs to the 5′ of S2 
ssDNA (Fig. 1c). The successful self-assembly of ASOs-
tFNA was verified by non-denaturing polyacrylamide gel 
electrophoresis (Fig. 1a) and confirmed by the slower migra-
tion of ASOs-tFNA compared to ssDNA (lanes 2–5 and 11 
in) or a combination of two (lanes 12 and 13), three (lanes 
14 and 15), or four strands (lanes 16 and 17). The morphol-
ogy of tFNA and ASOs-tFNA was characterized by AFM 
(Fig. 1e), and an approximate size of 10 nm was calculated 
for the ASOs-tFNA monomer. As shown in Fig. 1d, the 
hydrodynamic size of ASOs-tFNA was 16.66 nm, whereas 
that of tFNA alone was 10.58 nm. The size difference further 
proved the successful construction of ASOs-tFNA. There 

Table 2  Primer sequences 
of relevant genes designed 
for quantitative PCR

mRNA Primer pairs

16S RNA Forward 5′-TCG TGT CGT GAG ATG TTG GG-3′
Reverse 5′-GTT TGT CAC CGG CAG TCA AC-3′

gtfB Forward 5′-CAC TAT CGG CGG TTA CGA AT-3′
Reverse 5′-CAA TTT GGA GCA AGT CAG CA-3′

gtfC Forward 5′-GAT GCT GCA AAC TTC GAA CA-3′
Reverse 5′-TAT TGA CGC TGC GTT TCT TG-3′

gtfD Forward 5′-TTG ACG GTG TTC GTG TTG AT-3′
Reverse 5′-AAA GCG ATA GGC GCA GTT TA-3′

gbpB Forward 5′-ACA GCA ACA GAA GCA CAA CCATC-3′
Reverse 5′-CCA CCA TTA CCC CAG TAG TTTCC-3′

ftf Forward 5′-ATT GGC GAA CGG CGA CTT ACTC-3′
Reverse 5′-CCT GCG ACT TCA TTA CGA TTG GTC -3′
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was, however, no significant difference in zeta potentials 
(Fig. 1f), indicating that the ASOs-tFNA delivery system 
was as stable as tFNA alone.

3.2  ASO‑tFNAs Taken Up by S. mutans

To induce any effect on bacterial biofilm formation 
and virulence, it was first necessary to ascertain the 
ingestion of ASOs-tFNAs by S. mutans. Figure 2a pre-
sents the uptake rates of S. mutans incubated with dif-
ferent concentrations (500 or 750 nM) of Cy5-labeled 
tFNAs, ASOs, and ASOs-tFNAs over a period of 12 h 
as determined by flow cytometry. Accordingly, ASOs-
tFNAs were successfully taken up by S. mutans in a 
dose-dependent manner and more efficiently than either 
tFNAs or ASOs alone.

3.3  Effect of tFNAs Carrying Multi‑targeting ASOs 
on Cell Growth

The genes targeted by the ASOs-tFNA delivery system, 
gtfBCD, gbpB, and ftf, will not expressed in planktonic 
Streptococcus and, therefore, were not expected to affect 
the performance of S. mutans in sucrose-free BHI medium. 
Indeed, as shown in Fig. 2b, ASOs-tFNAs did not signifi-
cantly alter the growth curve of planktonic S. mutans cells.

3.4  ASOs‑tFNAs Prevent Bacterial Biofilm  
Formation

Crystal violet staining was used to study the effect of ASO-
tFNAs on biofilm formation and quantitatively calculate the 
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ability of bacteria to form biofilms at different time points. 
As shown in Fig. 3a, crystal violet staining gave a much 
darker and denser signal in tFNAs- and ASOs-treated cul-
tures than in the ASOs-tFNAs sample, indicating that the 
biofilm was more mature. Further, the OD of the eluate was 
measured and ASOs-tFNAs inhibition of biofilm forma-
tion was confirmed. Figure 3b shows the biofilms treated 
with tFNAs, ASOs, and ASOs-tFNAs for a period of 48 h, 
with all images acquired at the same light intensity and 

magnification. Accordingly, mature biofilms formed follow-
ing ASOs-tFNAs treatment were significantly less extensive 
than those of the control groups.

To verify whether the inhibitory action of ASOs-tFNA 
on biofilm formation (Fig. 3) relied on inhibiting EPS syn-
thesis, we evaluated the extent of bacterial growth and EPS 
accumulation by confocal microscopy. Figure 4 presents 
representative three-dimensional images of bacterial cells 
(green) and EPS (red), showing the biofilms’ morphology. 
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The vertical distribution of bacteria and EPS from the sur-
face of the glass to the liquid interface was quantified in 
COMSTAT using the confocal imaging data sets [51]. The 
results of data analysis indicated that ASOs-tFNAs dis-
rupted the cells’ ability to synthesize EPS and reduced bio-
film thickness. Analysis of the distribution of bacteria and 
EPS in the presence of different concentrations of ASOs-
tFNAs (500 or 750 nM) further supported these conclusions 
(Fig. 4a, b).

The effect of ASOs-tFNAs on biofilm formation was 
confirmed also by SEM (Fig. 5a). Consistent with con-
focal imaging results, the biofilms treated with 750 nM 
ASOs-tFNAs showed a significant reduction in EPS, 
resulting in a spongier and more porous structure com-
pared with tFNAs and ASOs treatments (white arrows). 
In addition, S. mutans did not show morphological abnor-
malities, such as damaged cell walls or swelling, demon-
strating that ASOs-tFNAs had no significant bactericidal 
effect.

3.5  ASOs‑tFNAs Inhibit Biofilm Formation

Finally, we sought to determine the molecular mechanism 
by which ASOs-tFNAs inhibited bacterial biofilm forma-
tion. After culturing S. mutans in the presence of differ-
ent concentrations of ASOs-tFNAs for 24 h, total RNA 
was extracted from equal amounts of bacterial cells and 
gene expression was analyzed by quantitative RT-PCR. As 
shown in Fig. 5b, ASOs-tFNAs inhibited expression of the 
gtfBCD, gbpB, and ftf genes. This finding demonstrated 
that the delivery system could simultaneously reduce the 
expression of all targeted genes. Moreover, expression of 
target genes was reduced compared to 16S rRNA, indi-
cating that ASOs-tFNAs targeting was specific for the 
intended genes.

There are many methods for treating chronic infections 
associated with biofilms, but none of them is 100% effec-
tive. During biofilm formation, the EPS enters deep into 
tissue structures, thus hindering its complete removal. 
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(n = 3), ***P < 0.001. (Color figure online)
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Moreover, the formation of biofilms allows bacteria to 
acquire many resistance mechanisms against commonly 
used antibiotics. Critically, the multi-targeted antisense 
oligonucleotide delivery system proposed here targets a 
variety of genes implicated in the early stages of biofilm 

formation, effectively limiting its occurrence. Based on 
our results, an ASO-tFNAs concentration of 750  nM 
achieves substantial EPS synthesis inhibition and, hence, 
reduction in biofilm formation and virulence during its 
early stages.
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4  Conclusions

We report constructing a novel and effective tFNA system 
for delivering ASOs. We verified the stability of the deliv-
ery system and demonstrated that ASOs-tFNAs could pen-
etrate the cell wall of S. mutans. Besides carrying antisense 
oligonucleotides to specific genes and thus downregulating 

their expression, ASOs-tFNAs can be designed to target 
multiple genes, which critically improves their inhibi-
tory action (Fig. 6) [42]. By inhibiting the early stages 
of biofilm formation, this strategy allows the treatment 
of chronic biofilm-mediated infection through subsequent 
early debridement or by improving the effect of antibi-
otics, both of which are otherwise powerless in already 
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Fig. 5  Cellular and molecular mechanisms responsible for inhibiting biofilm formation upon ASOs-tFNAs targeting. a Representative SEM 
images showing the architecture of biofilms following 24 h of incubation with tFNAs, ASOs, or ASOs-tFNAs. Images were taken at × 1000 and 
× 20,000 magnification, b expression of target genes as determined by quantitative RT-PCR. 16S rRNA was used as control. ***P < 0.001
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formed biofilms. Our results have validated the application 
of tFNAs as drug delivery systems in S. mutans; how-
ever, more types of biofilms and bacterial strains should 
be studied. We anticipate that tFNAs delivery systems can 
have a significant potential for the systemic inhibition of 
bacterial biofilms.
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