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HIGHLIGHTS

e This review gives a thinking based on the generic mechanisms rather than simply dividing them as different types of combination of

materials, which is unique and valuable for understanding and developing the novel hybrid materials in the future.

e The hybrid materials, their sensing mechanism, and their applications are systematically reviewed. Critical thinking and ideas regard-

ing the orientation of the development of hybrid material-based gas sensor in the future are also discussed.

ABSTRACT Chemi-resistive sensors based on hybrid functional mate-
rials are promising candidates for gas sensing with high responsivity,
good selectivity, fast response/recovery, great stability/repeatability,
room-working temperature, low cost, and easy-to-fabricate, for ver-
satile applications. This progress report reviews the advantages and
advances of these sensing structures compared with the single constitu-
ent, according to five main sensing forms: manipulating/constructing
heterojunctions, catalytic reaction, charge transfer, charge carrier trans-
port, molecular binding/sieving, and their combinations. Promises and
challenges of the advances of each form are presented and discussed.
Critical thinking and ideas regarding the orientation of the development

of hybrid material-based gas sensor in the future are discussed.
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1 Introduction

Monitoring and recording chemical stimulus or variations
in the environment are increasingly important in future
production and daily life of human health [1]. Achieving
this goal relies on the availability of high-performance sen-
sor units that are capable of detecting gas analytes, such as
volatile/semi-volatile organic compounds (VOCs/SVOCs)
highly rich regarding critical information for the detection,
monitoring and closed-loop control in many fields, including
medicine, food industry, environmental monitoring, public
security, and agricultural production [2, 3].

An ideal gas sensor requires high responsivity, good selec-
tivity, fast response/recovery, great stability/repeatability,
room-working temperature, low cost, and easy-to-fabricate
for practical applications [4—6]. To meet those requirements,
many types of gas sensors with different transduction forms,
e.g., chemi-resistor, field-effect transistor (FET), solid-state
electrochemical sensor (SSES), quartz-crystal microbalance
(QCM), gas capacitor, surface acoustic wave (SAW), have
been well studied and developed. Among them, since the
1960s [7], a chemi-resistor that contains an active sensing
layer bridging a pair of electrodes became a promising can-
didate due to its advantages [4—6, 8—12] including easy-to-
fabricate, use of very small quantity (milligram level) active
materials, wide adoption of sensitive materials, and simple
sensing data, which ensure its success in certain commer-
cialization opportunities [13—15]. However, it is rare to find
chemi-resistors that can meet these specific requirements.

An emerging approach in chemi-resistors to meet these
needs relies on hybrid materials, viz. materials that integrate
2+ single constituents at the nanometer or molecular level
[16-36], to achieve new and/or enhanced sensing properties.
In this progress report, we review the advances of the hybrid
material-based gas sensors concisely and comprehensively.
The hybrid materials-based chemi-resistive gas sensors are
distinguished, understood, and introduced based on the
generic mechanisms rather than simply dividing them as
different types of combination of materials. Then, the report,
in detail, focuses on the research and development (R&D)
aspects of hybrid gas sensors, while presenting and discuss-
ing the sensing performances of different types of hybrid
materials, and associated enhanced sensing mechanisms.
Promises and challenges toward the future development of
each elements are deeply thought and discussed. Critical

© The authors

thinking and ideas regarding the orientation of the develop-
ment of hybrid material-based gas sensor in the future are
also discussed.

2 The Need for Hybrid Functional
Nanomaterials for Sensing Applications

Chemi-resistors for gas sensing include three main pro-
cesses: diffusion/molecule capture unit, surface reaction
unit (including charge transfer), and charge carrier trans-
port unit (Fig. 1a) [37]. To date, most of these sensors and/
or sensor arrays utilize sensing elements that are based on
single material or transduction mechanism, of which intrin-
sic sensing activity or additional thermal/photonic energy
are usually employed as the driving force to stimulate the
sensing effects of target gases (Fig. 1b). The hindrances are
unavoidable at several levels: (i) not satisfying long-term
stability and sensitivity of organic chemi-resistors due to the
high affinity of conductive polymers (CP), such as polyani-
line (PANI), polypyrrole (PPy), and polythiophene (PTh),
toward volatile organic compounds (VOCs) and humidity
existed in the atmosphere; (ii) high operating temperatures
(usually > 200 °C), baseline drift, limited selectivity, and
oxidation/decomposition of VOCs in the case of inorganic
materials (especially metal oxide materials, e.g., ZnO, SnO,
TiO,, SnO,)-based chemi-resistor. A reliable solution for
these drawbacks is the design and utilization of new gas
sensitive materials based on hybrid inorganic—inorganic [8],
organic—organic [12], and inorganic—organic materials [8,
9,12, 16-36].

Using hybrid materials as sensitive transducer offers sev-
eral obvious advantages, compared with the single constitu-
ent. First, the inexhaustible abundance of hybrid materials
(in both the complex constituents and novel nanostructures)
makes it possible to involve an almost infinite continuum
of variable factors (surface-dependent factor, interface-
dependent factor, and structure-dependent factor) to gen-
erate new sensing behaviors (Fig. 1c) [38-49]. Second,
with hybrid material, more chemical/physical processes
with different enhanced mechanisms could be introduced
to precisely design, regulate, and enhance the sensing per-
formance mainly through catalytic reaction with analyte
[50-58], charge transfer [59-63], charge carrier transport
[64—66] manipulation/construction of heterojunctions [39,

https://doi.org/10.1007/s40820-020-0407-5
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Fig. 1 Schematic illustration of a three gas-sensing units and b sensing reactions. ¢ The enhanced gas-sensing mechanisms for hybrid chemi-
resistive nanomaterials. The upper part of ¢ was modified from reference. Reproduced with permission [38]. Copyright 2009, Elsevier

67], molecular binding/sieving [68—73], and their combina-
tions [74-77].

3 Hybrid Chemi-Resistive Gas Sensors

Hybrid materials can perform improved sensing character-
istics via one or a combination from five typical hybridizing
forms which are categorized into three sensing-dependent
factors (Fig. 2a). The first combination relies on catalysis
reactions (normally noble metal catalysts, e.g., Pt [78],
Pd [79], Au [50], and Ag [51]) between analyte gas and
decorated catalysts on host semi-conductive materials (cat-
egorized as surface-dependent factor). The second relies
on a fast charge transfer process, viz carrier withdrawal or
donation, electron acceptor or acceptor between guest addi-
tives and the host material (e.g., carbon nanotubes (CNTs)),
reduced graphene oxide (rGO) (categorized as interface-
dependent factor) [63]. The third relies on regulating the

SHANGHAI JIAO TONG UNIVERSITY PRESS

charge carrier transport in a conductive/semi-conductive
materials (e.g., single-wall carbon nanotube (SWCNT)-
metallo-supramolecular polymer (MSP), gold nanoparti-
cles (GNPs)-thiols, N,N’-diphenyl perylene tetracarboxylic
diimide (PTCDI-Ph)/para-sexiphenyl (p-6P)) upon exposure
to gas analytes (categorized as interface- and structure-
dependent factor) [66, 80, 81]. The fourth relies on manipu-
lation/construction of the heterojunctions such as n-n, p—n,
p—p, p—nh—p heterogeneous semi-conductive materials (cat-
egorized as interface-dependent factor) [39]. The last one
relies on semiconductors coated by gas molecular sieving/
binding layers or ligands/complexes for selective gas detec-
tion (categorized as surface- and structure-dependent fac-
tor) [72, 76, 82]. In the following section, we provide more
details on each of these combinations. It should be noted
that, according to the understanding of authors on chemi-
resistors (1. measuring the resistors directly; 2. measuring
the current when the device is applied a constant bias volt-
age; 3. measuring the partial voltage on the device in parallel

@ Springer
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Fig. 2 a Schematic illustration of five typical forms of hybrid functional nanomaterials for chemi-resistive gas sensing; b typical /-V curves of
different sensors under DC bias (from left to right, chemi-resistors, chemical diodes, and proton/ions types)

with a constant resistance when the resistance and device is
applied a constant bias voltage), we will review here only
resistive-change sensing devices in which the contact of sen-
sitive materials and electrodes is ohmic (good linearity of
I-V curves under DC bias, Fig. 2b); therefore, we exclude
devices in which the I-V curves under DC bias are nonlin-
ear despite that they exhibit similar resistance changes (e.g.,
chemical diodes, proton/ions types).

3.1 Hybrid Gas Sensors Based on Catalytic Effects

Catalytic effects of hybrid functional nanomaterials con-
tribute to high response, fast speed, and low operating
temperature via chemical/electronic sensitization, which is
usually accompanied by synergistic effects, complementary
behavior, and porous structures [50, 52, 83-86]. In addi-
tion, the exposed facets (morphologies) of matrix nanograins
(facet-dependent chemical activity) and catalytic additives
can greatly enhance the sensing properties of hybrid nano-
materials [87, 88]. For example, introduction of Cr dopants
to WO, polydedra can not only control the specific exposed

© The authors

facets and activation energy, but bring catalytic effects to the
matrix [50]. The combining effects led to improved sensitiv-
ity and reduced operating temperature. Further hybridiza-
tion with catalytic Au nanocrystals—to form Au/Cr-WO,
hybrids—contributed to high sensitivity, fast speed, and
reduced working temperature to acetone and benzene due
to Au/Cr co-catalysts-enhanced surface reaction (Fig. 3a, b).
The advantages of co-catalysts can improve even further the
hybrid materials. A recent example of this approach is Pd/Sb
nanocrystals modification of SnO, that Sb and Pd functioned
as anti-humidity and catalytic sites, respectively, which
remarkably reduced humidity interference and improved
responses toward H, (Fig. 3c) [89, 90].

The catalytic effects of loaded catalysts on host-sensitive
materials are associated with the contact between catalyst
and gas. A gas diffusion-favoured structure can provide addi-
tional exposed surface areas and fast speed via a combination
of surface- and structure-dependent factors. The introduction
of catalytic Ag NCs via e-beam evaporation and calcina-
tion into quasi-1D heterostructures significantly enhances
the response and selectivity to ethanol (Fig. 3d) [51, 91].
For even further performance, quasi-1D nanostructures with

https://doi.org/10.1007/s40820-020-0407-5
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Fig. 3 a SEM images of WO; octahedron, b 2.5 at.% Cr—WOj truncated octahedron and 10.0 at.% Cr—WOj; cuboid. Reproduced with permis-
sion [50]. Copyright 2015, American Chemical Society. ¢ Humidity dependence of sensor response to 200 ppm hydrogen at 350 °C, using
(black) undoped SnO,, (red) 0.1 mol % Sb-doped SnO,, and (green) 0.1 mol.% Pd-loaded and Sb-doped SnO, nanoparticles. Reproduced with
permission [89]. Copyright 2016, American Chemical Society. d TEM images of pure SnO,, 5Ag-Sn0O,, 10Ag-Sn0O,, and 50Ag—-SnO, NW
after heating at 450 °C for 2 h and the corresponding response-recovery curves to ethanol gas. Reproduced with permission [51]. Copyright
2011, American Chemical Society. e, f SEM images of Pt-PS—SnO, NTs (the inset is a schematic illustration). Reproduced with permission
[52]. Copyright 2016, Wiley—VCH. g Pattern recognition by PCA using dataset from sensor arrays of PtM-decorated meso-WO; NFs evaluating
real and simulated (diabetes and halitosis) breath. Reproduced with permission [53]. Copyright 2017, Wiley—VCH. h TEM image of Pd nano-
particles@ZnO NSs and the corresponding response-recovery curves to acetone gas (red ZnO NSs). Reproduced with permission [54]. Copy-
right 2012, American Chemical Society. i Gas response of Pt/BP and pristine BP to various H, concentrations (the inset shows the TEM images
of Pt/BP). Reproduced with permission [55]. Copyright 2017, American Chemical Society. (Color figure online)

both porosity and sensitive nanobuilding blocks, namely
mesoporous 1D nanofibers/tubes (meso-NF/NTs), have
been reported [41, 92-94]. By introducing sacrificial poly-
meric colloids and protein-templated catalysts to the solu-
tions, meso- and macro-porous Pt-decorated SnO, NTs have

SHANGHAI JIAO TONG UNIVERSITY PRESS

been fabricated by electrospinning and sintering in sequence
(Fig. 3e, f) [52]. The combined effects of porous nanostruc-
tures, fully depleted sensing areas and uniformly distributed
Pt nanocatalysts on SnO, NTs allow a highly selective detec-
tion of acetone (R5Sppm=192). Similarly, bimetallic PtM

@ Springer
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(M =Pd, Rh, and Ni) catalysts can be introduced to meso-
WO; NFs that are then highly selective detectors of acetone
and H,S gas [53]. Sensors array combined with pattern rec-
ognition methods (so-called e-nose) based on three different
PtM-decorated meso-WO; NFs can accurately detect and
discriminate the breath of a simulated biomarker through
principal component analysis (PCA, Fig. 3g).

On the basis of intensive works on porous 2D ZnO nano-
structures [37, 95, 96], Pd NCs have been deposited on
porous 2D ZnO nanoplates (host materials) transformed by
Zns(CO3),(OH)¢ nanoplates to form 2D Pd/ZnO hybrid nan-
oplates (Fig. 3h); these acquire enhanced sensing properties
[54]. Similarly, catalytic Pt can be used to decorate the sur-
face of BP, which enables RT detection of H, by Pt/BP at RT

(Fig. 3i) [55]. When the structure of the host materials is fur-
ther upgraded to 3D hierarchical porous (hp) nanostructures,
a good gas diffusion platform is obtained with a large loading
area of catalysts. By taking the advantage of the opals/poly-
meric beads or mesoporous silica/carbon/polymers templat-
ing method, hp-MOX thin films (3D hp nanostructures) with
certain additives (catalysts) have been developed [97-102].
In this simple approach, hp-SnO,-inverted opal thin films
loaded with mono-dispersed Pt catalyst (of uniform size of
~5 nm) were prepared (Fig. 4a) [103]. The improved sens-
ing responses of Pt-doped SnO,-inverted opal thin films
were achieved due to increased porosity, electronic sensi-
tization, and synergism (Fig. 4b). Similarly, hp—Pt-WO; or
hp—Cr—WO;-inverted opal thin films have been successfully
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Fig. 4 a Schema of the one-step preparation of Pt-doped SnO,-inverted opal films, and b responses comparison of different sensors as a func-
tion of CO concentration at 350 °C (insets are the corresponding HRTEM micrographs). Reproduced with permission [103]. Copyright 2010,
American Chemical Society. ¢ Responses comparison of different sensors as a function of working temperature to 74 ppm NHj; gas (the inset is
the corresponding HRTEM micrograph of Pt-WO;-inverted opal films). Reproduced with permission [104]. Copyright 2011, American Chemi-
cal Society. d Synthesis of ordered mesoporous WO/Pt hybrids. e Gas response of WO5/Pt-0.5 and WO4/Pt-0 to different gases (hydrogen, CO,
methane, ethanol, ammonia, acetone, benzene, and toluene) at 100 ppm and 125 °C in 55-60% RH (the inset is an FESEM image of the crystal-
line WO,/Pt-0.5 viewed from the top surface). Reproduce with permission [56]. Copyright 2018, Wiley—VCH
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prepared (Fig. 4c) [104]. Due to the catalytic activation of
N-H bond dissociation and effective gas diffusion within
the macro-porous structures, excellent NH; responses were
obtained for the hp—Pt—-WOj; sensor. As another example,
well-controlled self-assembly of block copolymers such as
poly(ethylene oxide)-blockpolystyrene (PEO—b—PS) could
generate a perfect template with a highly ordered struc-
ture. Mesoporous WO;/Pt with a highly ordered and porous
structure (inset of Fig. 4e) could be obtained by using this
template and a 2-step pyrolysis process (Fig. 4d, including
first treated in inert atmosphere and finally calcinated in air)
[56]. Contributed to high surface areas (112128 m? g=1),
large pore size (13 nm), and well-dispersed catalytic Pt NCs
(~4 nm), the WO5/Pt-0.5 sensor had the highest response
and fastest response-recovery speeds (Fig. 4e). Another
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category of nanostructures of host materials is multi-shell,
yolk—shell, and multi-yolk—shell with hollow nanocham-
ber [83—-86]. With the hollow host nanochamber (SnO,)
loading catalytic Pd through spray pyrolysis (Fig. 5a) [57],
and showing the formation of double-shelled Pd—SnO, @
Pd-SnO,@Pd-Sn0O, yolk—shell spheres (Fig. 5b) [57], both
sensitivity and selectivity were enhanced due to the unique
hierarchical porous structure and uniformly exposed Pd cata-
lysts. The representative works are summarized in Table 1.

As aforementioned, greatly improved sensitivity and
speed have been realized by well design on the dispersion
of catalysts/co-catalysts and gas diffusion-favored struc-
tures of hybrid gas sensors based on catalytic effects. The
remaining problems of operating temperature and selectiv-
ity might be resolved by further combination with charge
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350-450 °C (B: benzene, H: H,, E: C,Hs;OH, F: HCHO, X: o-xylene, T: toluene). b Scheme showing the formation of double-shelled Pd-SnO,@
Pd-SnO,@Pd-SnO, yolk—shell spheres. Reproduced with permission [57]. Copyright 2014, The Royal Society of Chemistry
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Table 1 Representative works based on catalytic effects

Materials Gas detection Detection Work tem- Refs.
range perature

WO,/Pt (60) 100-500 ppm 125 °C [56]

Si0,/In,04 NOx 970 ppb— RT [220]
97 ppm

Pd/WO; Acetone 50 ppb- 300 °C [221]
500 ppm

PdO/ZnFe,O, Acetone 5-300 ppm 275°C [222]

Au/LaFeO, Acetone 2.5-40 ppm 100 °C [223]

Au NPs/ZnO  Athanol 5-60 ppm RT [224]

Sm,0,/SnO,  Acetone 0.1-200 ppm 250 °C [225]

Pd/SWNT CH, 6-100 ppm RT [226]

Pt/SnO, NTs CH;COCH;  10-100 ppb 350 °C [52]

Pd@SnO, H,S 5-100 ppm 290 °C [227]

CuO/Pd H,S 1-100 ppm 20-100 °C [228]

transfer (Sect. 3.2) and molecule sieving layers (Sect. 3.5),
respectively. Moreover, the newly developed single atomic
metal and/or metal cluster-based catalysts with better cata-
Iytic effect might bring new understandings and chance in
such areas [105-108].

3.2 Hybrid Gas Sensors Based on Charge Transfer
Effects

Charge transfer happens between decorations and the host
materials (good conductivity), which could vary the conduc-
tivity of the hybrid materials. This process improves sen-
sitivity to the analysts at low temperature or even at room
temperature (RT), accompanying fast response and recovery
properties [4]. Discrete and uniform SnO, NCs-decorated
multi-walled CNTs (MWCNTs) (Fig. 6a) [59] gave high
performances (response of ~180% to 100 ppm of NO,) at
RT due to the abundance of active sites and easy electron
transfer under the assistance of the well-matched work
functions of SnO, and MWCNTs. Liu et al. [109] used rGO
instead of the carbon nanotubes. This researcher successfully
synthesized SnO, QDs/rGO hybrids by a one-step solvent
thermal reaction at 180 °C (oleic acid and oleylamine as cap-
ping agents) (Fig. 6b) [109]. Due to co-effects of excellent
gas adsorption of QDs, effective charge transfer between
SnO,—rGO interfaces and the superb transport capability of
rGO, the sensor responses in 2 s with fully recovery proper-
ties upon exposure to 33 to 50 ppm of H,S at RT (Fig. 6¢).

© The authors

Meanwhile, the SnO,/rGO-based sensor showed an obvi-
ous enhanced response compared with the responses of pure
SnO,- or rGO-based sensors toward H,S at 22 °C, in which
the rGO acted as a host transducer material. By combin-
ing both advantages, 2D MoS, sheets were hybridized with
2D graphene to form rGO/MoS, aerogel with large surface
areas, porous structure, and high electrical conductivity
(Fig. 6d) [61]. Efficient and rapid charge transfer across the
interface ensured enhancement and fast detection of NO,
than bare rGO or MoS, (Fig. 6e). Ascribing to the high
specific surface area of porous Cu,O nanowires networks
and improved conductivity via effective charge transfer,
rGO-Cu,0 mesocrystals had much higher sensitivity to NO,
at RT, surpassing the performance of stand-alone systems of
Cu,0 and rGO sheets (Fig. 6f) [62].

CPs could also be applied in charge transfer hybrids by
replacing the inorganic components. For instance, graphene
was combined with PANI to form a hybrid thin film that had
improved, reversible, and stable NH; sensing (Fig. 6g, h).
The fast electron transfer between hybrids and NH;, assisted
by n—=r interactions of PANI and rGO with low electron
transfer energy barrier, led to more electrons transfer from
PANI to rGO; this effectively improved the responsivity and
response time (Fig. 6i) [63]. Up to date, the detecting gases
are limited to strong reducing/oxidizing molecules such as
NO,, NH;, and H,S, which hinders the widely application
of such hybrid gas sensors. The critical points to overcome
this shortcoming may be depicted as: (1) the chemical/elec-
tronic modification of the reported charge transfer based
hybrids to improve the sensitivity and expand the types of
detectable gases (i.e., Pt—SnO,/rGO, details in Sect. 3.6);
(2) the development on the new candidate of chemi-resistive
decorations with desired absorption—desorption process and
well-tailored energy level/energy band gap structure, which
always shows low thermal activation energy (<0.5 eV,
i.e., electronic conductive metal-organic frameworks (EC-
MOFs), for details see Sect. 3.5). The representative works
are summarized in Table 2.

3.3 Hybrid Gas Sensors Based on Regulation of Charge
Transport
Different from charge transfer that simply uses high charge

transport capability of the highly conductive component,
hybrid gas sensors based on regulation of charge carrier

https://doi.org/10.1007/s40820-020-0407-5
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Fig. 6 a SEM image of the sensor after assembly of SnO, nanocrystals onto the MWCNTs (inset is the HRTEM image of a MWCNT uniformly
coated with SnO, nanocrystals). Reproduced with permission [59]. Copyright 2009, Wiley—VCH. b TEM image of SnO, QDs/rGO hybrids;
and ¢ sensor responses to 50 ppm of different gas at RT. Reproduced with permission [109]. Copyright 2016, American Chemical Society. d
Enlarged TEM image demonstrating the MoS, coating of the few-layer graphene scaffold. e Sensor response to 0.5 ppm NO, at different micro-
heater temperatures, improving response and recovery time. Reproduced with permission [61]. Copyright 2016, Wiley—VCH. f Sensitivities of
NO, sensor for the three devices (inset is a schema of the mechanism of NO, sensing of rGO-Cu,0). Reproduced with permission [62]. Copy-
right 2012, American Chemical Society. g Schema of the sensing mechanism of rGO-PANI hybrids. h NH; responses of PANI, rGO and their
hybrids at different concentrations. i Repeated NH; responses of PANIL rGO and their hybrids at 10 ppm. Reproduced with permission [63].

Copyright 2016, Royal Society Chemistry

transport can manipulate the sensing properties by changing
carrier concentrations, transportation mode, and/or pathways
of charge transport.

A simple and effective way of enhancing responsivity
relies on controlling the charge transport by tuning carrier
concentrations. For example, a PTCDI-Ph/p-6P ultrathin
film was fabricated with a thickness of only 6 nm, of which
5 nm was attributed to (p-6p/p type) asymmetric thickness
and 1 nm to (PTCDI-Ph/n type) (Fig. 7a) [64]. Electrons in
the PTCDI-Ph were deprived by NO,, which simultaneously

SHANGHAI JIAO TONG UNIVERSITY PRESS

released the restricted hole in p-6p, and thus influenced the
transportation of p-6p; this generated a NO, sensing signal at
RT (Fig. 7b). Chi et al. [64] thermal-deposited a high-quality
crystalline terrace-like TIPS-pentacene film on p-6P that can
easily be positively charged (Fig. 7c). The efficient charge
transport ability and low original carrier concentration gave
superb NO, sensing in terms of both response/recovery
speed (Fig. 7d) and responsivity/sensitivity (Fig. 7e) [64].
Impressively, when the transport direction of charge carri-
ers changes from horizontal to vertical in a vertical diode

@ Springer
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Table 2 Representative works based on charge transfer effects

Materials Gas detection Detection range Work temperature Refs.
CuxO/multilayer graphene NO, 97 ppb-97 ppm RT [229]
rGO/NiO NO, 0.25-60 ppm RT [230]
ZnO QDs/graphene HCHO 25-100 ppm RT [231]
SnO,/rGO H,S 10-100 ppm RT [109]
Graphite/polyaniline NH; 50-1600 ppm RT [232]
SnO,/graphene CH, 1000-10,000 ppm 150 °C [233]
SnO, CQD/MWCNT H,S 3.3-100 ppm 70 °C [234]
rGO/TiO,—Nb (60) 100-1000 ppm 380 °C [235]
Fe;0,@RGO NO, 50 ppb—50 ppm RT [236]
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Fig. 7 a Sensor device configuration and molecular structures of the materials. b The relative response of 1 nm PTCDI-Ph/5 nm p-6P film to
NO, pulses. The relative response curve is plotted as a function of time as the devices become exposed to different NO, concentrations. Repro-
duced with permission [66]. Copyright 2013, Wiley—VCH. ¢ Sensor device configuration and molecular structures of the materials. d The fgq s,
t10.rec @nd relative recovery after 10-min N, pulse of the responses to different gases. e Responsivity (R) and sensitivity (S) to different gases.

Reproduced with permission [64]. Copyright 2017, Wiley—VCH

(containing top/down electrodes and VOPc/F16CuPc layers,
Fig. 8a), the sensor responded remarkably well to 0.5-5 ppm
NO, at RT (Fig. 8c), with an acceptable sensing stability
(Fig. 8b) and wide linear working region [65]. More inter-
estingly, when the voltage bias is raised from 0.2 to 1.5V,
the sensing ability weakened dramatically (Fig. 8d), being
ascribed to the transportation change from ohmic to space
charge limited current (SCLC) mode (Fig. 8e) [65], which
may give guidance as to how to choose the bias to control

© The authors

the charge transportation for gas sensors to get them to work
under the best conditions.

Another strategy to manipulate the properties of sen-
sors based on charge transport is by regulating the con-
ductive pathways of conductive-insulate hybrid materials
via physical cracks, chemical bindings, or the phase of the
component. More specifically, this approach relies indeed
on regulating the electron hopping barrier, the interspace
between conductive materials, phase-change or their combi-
nation. Insulating polymers can be combined with sensitive

https://doi.org/10.1007/s40820-020-0407-5
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inorganic materials to fabricate highly sensitive and selective
chemi-resistors (Fig. 9a). Hybrid thin films as sandwiched
PMMA/Pd/PMMA (PMMA = poly(methyl methacrylate))
were prepared on a flexible substrate using sputtering and
spin coating in sequence (Fig. 9a) [110]. Hybrid thin films
with nanogaps formed by 25% mechanical stretching have
very selectivity and sensitivity in detecting H, against O,,

1 SHANGHAI JIAO TONG UNIVERSITY PRESS
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Fig. 9 a Schematic diagram of the fabrication of nanogap sensors using PMMA/Pd/PMMA trilayer films on a PDMS substrate. b Schematic

diagrams indicating the origins of the difference between the H, detection limits of the Pd nanogap and the PMMA/Pd/PMMA hybrid nanogap
sensors. Reproduced with permission [110]. Copyright 2014, Elsevier

ascribed to the selective penetration of H, in PMMA mem-
branes and the density reduction of the cracks formed in
the trilayer of the hybrid thin films (Fig. 9b). Adoption of
similar principles, but with higher effects, relies on films of
GNPs coated with monolayers of thiols [111]. These struc-
tures were a good solution for VOCs sensing due to the
swelling and shrinkage of molecular chains interacting with
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VOC:s (Fig. 10a) [81]. Assembly of the GNP-based chemi-
resistors with a wide variety of functional groups creates
sensor arrays with different resistances that can be further
varied after interacting with VOCs [81]. The transport of
electrons, expressed in electrical resistance, can be dually
regulated by controlling the interspaces between GNPs after
applying strain to the GNPs-based film, which further influ-
ence sensitivities (Fig. 10b) [112]. CNTs are also used as the
host with the surface coverage of molecular (MSPs) (inset of
Fig. 10c) [80]. Such MSPs could create sensory devices with
a dosimetric (time- and concentration-integrated) increase
in electrical conductivity triggered by electrophilic chemical
substances (Fig. 10c).

In summary, for cases where the resistance decreased
upon exposure to target gas, the depression of the off current

© The authors

via carrier concentrations reduction, transportation mode
changes and/or physical cracks might be the most effective
way to realize high sensitivity. Simultaneously, as presented
above, the component used for the controlling charge trans-
port of host materials can further contribute to improved
speed, long-term stability, and excellent selectivity. The rep-
resentative works are summarized in Table 3.

3.4 Hybrid Gas Sensors Based on Heterojunctions

Heterojunction is defined as the interface between two dis-
similar semiconductors (one is the host, and the other one
is the guest) that form a junction (n—n, p—p, p—n) linked
with energy band structure due to the alignment of their
fermi level. Notably, although the broad definition of

https://doi.org/10.1007/s40820-020-0407-5



Nano-Micro Lett. (2020) 12:71

Page 13 of 43 71

Table 3 Representative works based on regulation of charge transport

Materials Gas detection Detection range Work temperature Refs.
TIPS-pentacene NO, 0.2-20 ppm RT [64]
PMMA/Pd/PMMA H, 600-6000 ppm RT [110]
PANI/SWCNT NH; 1-100 ppm RT [237]
Oleylamine/Pt Organic contamination <0.3 ppm RT [238]
Ionic liquids/CNT Heptanal 200 ppm RT [239]

Toluene 1000 ppm

Ethanol 1000 ppm
CNTs/hexa-peri-hexabenzocoronene  Decane ~ 10 ppb RT [240]

bilayers Octane ~ 15 ppb

Hexane ~ 10 ppb

Ethanol ~ 10 ppb
GNPs Nonanal, styrene, ethanol, propioni- 50-1000 ppb RT [112]

trile

heterojunctions covers all types of composites forming a
junction in the interface, it is not clear enough for the well
understanding of the complicated sensing mechanisms of
composites sensing materials. Therefore, in this work, the
narrow definition of manipulating/constructing heterojunc-
tions is used, which excludes cases of catalytic effects,
charge transfer, and charge carrier transport. According to
the definition, the junction changes the interface potential
energy barriers and regulates the transfer and/or injection
of electrons and holes in a precise manner when it interacts
with gas analytes. For example, n—n heterojunctions made
of In,O; hollow spheres (acetone-sensitive host) coated with
CeO, nanoparticles (humidity-sensitive guest) were synthe-
sized and characterized as a chemi-resistive film. Expos-
ing the layer to various gas analytes has shown selective
detection of acetone in the presence of water, taking advan-
tage of the chemical interaction between CeO,, In,0;, and
water vapor, which greatly reduces the interfering effects of
humidity (Fig. 11a) [113]. By modulating interface poten-
tial energy barrier between n—n junctions, as in the case of
Fe,0,/TiO, tube-like quasi-1D nanostructures synthesized
through a multi-step hydrolysis (Ostwald ripening & thermal
reduction), the corresponding sensing performance could
be greatly improved (Fig. 11b) [114]. Combining modula-
tion of electron transfer over the energy barrier at the per-
fect SnO,/ZnO heterojunction—fabricated by atomic layer
deposition—and UV light generated electron—hole pairs, the
sensitivity to NO, could be improved using the SnO,/ZnO
core-sheath nanowires (Fig. 11c) [115]. By introducing nar-
row band gap into the junction, such as in the case of In,0;

SHANGHAI JIAO TONG UNIVERSITY PRESS

NCs to ZnO, a good response at visible-light conditions to
gas analytes (e.g., formaldehyde) at RT (R100 ppm =419%)
[54] was attainable.

The unique morphology (good compatibility with the
devices), nanoscale thickness, and high surface area of 2D
nanostructures make them promising as the host materials
for chemi-resistive gas sensors. Hybrids of SnO, NCs-dec-
orated MoS, nanosheet (MoS,/SnO,) were synthesized via
hydrolysis-pyrolysis processes (Fig. 11d) with air stability
[116]. The SnO, NCs not only enhanced the stability of
MoS, nanosheets in dry air, but served as strong dopants
for MoS,, leading to the changes of conduction channels
in the MoS, nanosheets (Fig. 11e). For further improve-
ments in the sensing performance, introduction of porosity,
such as in the case of WO; lamella-based films loaded with
mono-dispersed SnO, QDs (~4 nm) (Fig. 11f), could reach
high levels [117]. Experimental results show that the porous
lamellar-structured WO;—SnO, hybrid films could achieve
high response to NO, gas, ascribing the effective insertion of
QDs into lamella stacks as a strong electronic sensitization.

Compared with n—n heterojunctions, p—n heterojunc-
tions provide a stronger manipulation on interface potential
energy barriers, build-in electric field and additional cata-
lytic effects in some unique cases. For example, exposing
p—CuO nanoparticles loaded on CuO-SnO, p—n nanowires
to H,S transformed it to highly conductive CuS (Fig. 12a)
[67], resulting in depleted region change (the p—n junction
breakup) and second-order effects (the oxidation of H,S
by absorbed oxygen) after p-CuO was reversibly gener-
ated and removed on the SnO, surface. Without generating
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Fig. 11 a TEM images and dynamic sensing transients of Ce-In,0; hollow spheres exposed to 0.5-20 ppm of acetone at 450 °C in dry (red)
and RH 80% (blue). Reproduced with permission [113]. Copyright 2016, Wiley—VCH. b TEM image of 1D Fe,05/TiO, tube-like nanostruc-
tures. Reproduced with permission [114]. Copyright 2012, American Chemical Society. ¢ Low-magnification TEM image of SnO,/ZnO core—
shell nanowires (the inset is the corresponding energy band diagram of the SnO,/ZnO system with/without UV light). Reproduced with per-
mission [115]. Copyright 2013, American Chemical Society. d High-resolution SEM image showing that SnO, NCs decorate on the MoS,
nanosheets (the inset is the corresponding SAED patterns), and e dynamic sensing response of the MoS,/SnO, nanohybrids to different NO,
concentrations (the inset is the enlarged sensing response curve for 0.5 ppm NO,). Reproduced with permission [116]. Copyright 2012, Wiley—
VCH. f Schematic of the sensing mechanism of WO;-SnO, nanoplates and the corresponding responses comparison toward NO, gas. Repro-
duced with permission [117]. Copyright 2014, American Chemical Society. (Color figure online)

new chemical compounds, simply tuning the thickness of
in situ oxidation layer, rich Te-Te or TeO,/TeO, bridging
point contacts and additional p—n heterojunctions (Te/SnO,)
contributed to further excellent sensing performances (to
CO and NO,) of the brush-like heterostructures (Fig. 12b)
[118]. The nanorods of p-type coating layer can be replaced
by continuous layer to form core-sheath hybrids processing
radial modulation of potential energy barriers, for instance,
both n-ZnO/p-CoPc (cobalt phthalocyanines, Fig. 12¢) [119]
and n-SnO,/p-Cu,O (Fig. 12d) [120]. Core-sheath NRs have
better sensitivity of the target gases.

Conductive polymers (CPs, e.g., PPy, poly(3,4-ethylenedi-
oxythiophene) (PEDOT), PANI) that are p-type components
of diverse types of p-n heterojunctions can work at RT or
low operating temperature with different working principles.
First, PPy-ZnSnO4, p—n hybrid nanoparticles, can enhance
the NH; sensing performance (3—4 times higher) compared

© The authors

with pure PPy and ZnSnO, (Fig. 13a) [121]. The concen-
tration of NH; can be quantitatively detected (Fig. 13b)
with shorter time of response (26 s) and recovery (24 s)
(Fig. 13c). The overall improved performance has been
ascribed to the p—n heterojunction, in which the holes at high
concentration in PPy and the electrons in Zn,SnO, diffuse
into each other to form a built-in electric field of a depletion
layer (Fig. 13d). Interaction between Zn,SnO,—PPy and NH,
broadens the depletion layer, which determines the response,
and the speed of response/recovery. When the p—n junction
was reinforced as dual p—n junctions (p—n—p) in the hybrids
of the hollow In,0; nanofibers (NFs) and PANI (Fig. 13e),
the performances were further enhanced (Fig. 13f) [122].
For CP-based chemi-resistive heterojunctions, unsatisfied
sensitivity (response) and long-term stability will be two
challenging issues for researchers.

https://doi.org/10.1007/s40820-020-0407-5
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Fig. 12 a SEM image of a single hybrid NW and the schematic illustration of gas-sensing mechanism of CuO-SnO, p—n nanowires. Repro-
duced with permission [67]. Copyright 2013, Elsevier. b SEM images of the as-grown Te-coated SnO, brush-like products prepared at source
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as a function of shell thickness, respectively; right insets are the corresponding sensing mechanism). Reproduced with permission [120]. Copy-

right 2015, American Chemical Society

Obvious advantages of heterojunction-type chemi-resis-
tive hybrids-based gas sensor can be summarized as: (1)
higher sensitivity due to manipulations of the potential
energy barrier formed by band bending of different com-
ponents (e.g., Fe,05/TiO, tube-like quasi-1D nanostruc-
tures (n—n) [114], n-ZnO/p-CoPc [119], and n-SnO,/p-
Cu,0 [120] core-sheath NRs); (2) improved selectivity to
some gases (e.g., CuO-SnO, p—n nanowires to H,S [67]);
(3) promising, although limited so far, to anti-interference
gas (e.g., CeO,—In,0; hollow spheres with anti-humidity
properties [113]); (4) avoiding UV-introduced ozone and
performance degradation (for example, when narrow-band
guest material hybrids with semi-conductive host materi-
als, e.g., CdS-ZnO [123, 124], ZnO-CdS [125], CdSe-ZnO
[126], the room operation temperature can be achieved by
the visible-light-driven gas sensing). The representative
works are summarized in Table 4.

In summary, the critical points to achieve better perfor-
mance in heterojunction-based gas sensor are depicted as:
(1) maximum effective contact areas of the interfaces via
surface and structure design; (2) matched band structure to

SHANGHAI JIAO TONG UNIVERSITY PRESS

facilitate the manipulation of potential energy barrier; (3)
additional capability of catalysis of guest additives to host
materials; (4) visible-light-driven photocatalytic abilities
and good charge carriers separations for light-driven n—n
or n—p hybrids; (5) selectivity-improvement-purposed
heterojunction design based on specific interaction (e.g.,
Pd-H,, CuO-H,S, PPy—-NHj;) or n—p response-type rever-
sion (Co3;0,—~Sn0O, p—n junctions for H,) [127].

3.5 Hybrid Gas Sensors Enhanced by Molecular
Probing and Sieving Effect

Functionalization, coating or doping in/on the sensing
materials, i.e., introduction of the sensing probe, was dem-
onstrated as an effective way of improving the selectivity
and specificity through a one-lock one-key binding or struc-
ture similarity-based combination. Both the inorganic and
organic probes have been well developed. The sieving of
interferon, especially the humidity in the environment, is an
alternative way of improving specificity.

@ Springer
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Table 4 Representative works based on heterojunctions

Materials Gas detection Detection range Work temperature Refs.
a-Fe,0;/Sn0, Acetone 10-2000 ppm 250 °C [241]
Zn0O/Sn0O, NO, 200-2000 ppb RT [242]
SnO,/SnS, NO, 1-8 ppm 80 °C [243]
SnO,/a-Fe,05 Ethanol 20-100 ppm 225 °C [244]
Zn0/ZnFe,0, Acetone 5-700 ppm 250 °C [245]
a-Fe,05/NiO Toluene 5-100 ppm 300 °C [246]
SnO,/SnS, NH; 10-500 ppm RT [247]
TiO, QDs/NiO NO, 5-60 ppm RT [248]
ZnO/MoS, Acetone 10-500 ppb 350 °C [249]
Zn0/ZnCo,0, Acetone 50-300 ppm 175 °C [250]
Si/SnO, H,S 10-50 ppm 100 °C [251]
SnO,@PANI NH; 10 ppb—100 ppm RT [252]
NiO@SnO, H,S 0.1-50 ppm 250 °C [253]
SnS,/SnS NO, 0.125-8 ppm RT [254]
Sn0,/Sn;0, NO, 20 ppb—50 ppm 150 °C [255]
Zn0/ZnCo,0, Acetone 10-100 ppm 275°C [256]
In,05/ZnO HCHO 5-100 ppm RT [257]
© The authors https://doi.org/10.1007/s40820-020-0407-5



Nano-Micro Lett.

(2020) 12:71

Page 17 of 43 71

=2
(b) e 0.2 0.5 1 2 ©
(@) o ppm ppPm  ppm  ppm & -=- S-RGOH
'@ 1001 < 5oL —*RGOH
5] o
g NO. o
NaHSO_«, g o onz \ <—
Self-assembly o NO, & 10
Graphene g5 °C,3h o off 8
Oxide 9 Q
T 80 5
5 J
£ * of .
o T T T T T . L L L L
z 0 1000 2000 3000 4000 0.0 0.5 1.0 1.5 2.0

Saturation

—_
Q.
-

Association

Resistance (Q)

Time (s)

NO3 concentration (ppm)

(f) B Occupation
— No,; —so, —

- SAM@NW -~ SAM@NW

- SAM@NW

Energy (eV)

LUMO

Time (s)

NO,@SAM@NW

Density of states (arb. units)

Fig. 14 a Schema of the synthesis of 3D chemically modified graphene hydrogel. b Dynamic response of the 3D S-RGOH sensor versus time
after exposure to 0.2-2 ppm NO,. ¢ Plots of the quantitative responses of the S-RGOH and RGOH sensors versus NO, concentration. Repro-
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A 3D sulfonated rGO hydrogel (S-RGOH)-based gas
sensor combining chemical functionalization and porous
structures was synthesized in a one-step hydrothermal
reaction (Fig. 14a) [68]. Addition of a NaHSO; probe dra-
matically enhanced the response (Fig. 14c) of NO, with
fast recovery (Fig. 14b), assisted by the porous structures
of the graphene host. Self-assembled monolayers (SAMs)
with suitable alignment of the gas—SAM frontier molecu-
lar orbitals (Fig. 14e) with respect to the SAM-NW Fermi
level (Fig. 14f); this led to high selectivity and sensitivity
to analyte gas [70]. SnO, NWs were modified with amine-
terminated SAM and applied as light-driven chemi-resistors
working at RT, achieving good NO, sensing performance,
the schematic mechanism of which can be found in Fig. 14d.
This concept was extended to porous MOX nanostruc-
tures for further enhancements of their sensing properties.
APTES-modified porous WOj; nanotubes (P-WO; NTs
(10%)@APTES) performed the best sensitivity and selec-
tivity (Fig. 14a), which can be ascribed to the large sur-
face area and high gas diffusion rate provided by P-WOj;,
and selective reaction between NO, and surface SAM with

SHANGHAI JIAO TONG UNIVERSITY PRESS

APTES (Fig. 15b, c¢). The existence of SAM on the surface
of inorganic materials (except 2D nanomaterials) limits the
working temperature, which greatly weakens the sensing
performance, although it could be resolved by UV irradia-
tion. Using conductive polymer as the host material with
surface SAM functionalization by the “1-stone 2 birds”
strategy was promising and novel (Fig. 15d, e) [72]. Superb
sensing performances were achieved by combining RT sen-
sitivity of CP and good selectivity of SAM (Fig. 15f) [72].

Figure 16a shows the low cross-sensitivity to humid-
ity and other interferon gases by refreshing the regenera-
tive surface involving the interaction between facile redox
fair (Tb3*/Tb**) and surface OH group (or water vapor)
on SnQ,. This 5 Tb—SnO,-based chemi-resistor achieved
high response to acetone exposure [128]. The oleic acid
SAM also was effective in screening the effect of humidity
(<350 ppm) when it was layered on PANI surface (Fig. 16b,
c¢) [82]. Although it is not enough for practical application,
this demonstration is still valuable in pointing to a promising
way to eliminate the interferon of humidity.
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Recently, MOF materials are great opportunity in gen-
erating sub-nanometer or nanometer pores with high uni-
formity. Neat MOFs chemi-resistors were prepared based
on hydrophobic MOF (ZIF-67), which showed selective
response to VOCs, with slightly interfering effects of
humidity (Fig. 17a) [129, 130]. ZnO@ZIF-8 core-sheath
NRs powders were synthesized by hydrothermal reaction
using a self-template strategy (Fig. 17b) [131]. The chemi-
resistive gas sensor based on the thick film of ZnO @ZIF-8
hybrids had satisfactory sensitivity and response time to
100 ppm formaldehyde, even under interfering humidity
(Fig. 17c). Mixing the CP with molecularly imprinted
polymer (MIP) molecular (Fig. 17d) was another effec-
tive approach to improve not only the responsivity, but
selectivity (Fig. 17f) [132]. Responses of interferon
(2,4,6-TNT) and analyte (2,4-DNT) were suppressed and
enhanced, respectively, although they are of very similar
molecular structure and functional group [132]. However,
the speed of response and recovery showed no obvious
change (Fig. 17¢e) [132]. Instead of using functional MOFs
as filter film coating on sensing materials to provide addi-
tional selectivity and/or sensitization, EC-MOFs are novel
emerging materials with regular porosity and conductivity,

© The authors

which are promising for chemi-resistors with high sen-
sitivity and selectivity [76, 133—-158]. Unlike MOX and
MOX-MOFs, which still need additional thermal or pho-
tonic energy as the trigger source to activate the sens-
ing reaction, EC-MOFs can be directly used as sensitive
materials based on their regular micro-porosity, selective
frameworks, high electronic conductivity, and RT activity
[139, 144-146, 159-166]. Therefore, EC-MOFs are prom-
ising components for hybrid gas sensors and will be pow-
erful competitors for the new generation of gas sensors.
As mentioned above, the introduction of molecular prob-
ing and sieving effect can effectively overcome the poor
selectivity problem of chemi-resistors. Up to date, only a few
organic/inorganic probe or porous materials with molecule
sieving effects have been applied to chemi-resistors to real-
ize simple guest-matrix interaction (e.g., -NH, group with
NO,, -NO, group with NH;, NaHSO; with NO,) or mol-
ecule rejection (e.g., anti-humidity, gas molecules with large
kinetic diameter). Such cases are ultra-small fraction of the
state-of-art gas molecule adsorption and separation areas.
More guest-matrix interactions (e.g., van der Waals inter-
actions, hydrogen bond, n—x interactions, weak acid—base
interactions) and gas separation design (e.g., channel traffic

https://doi.org/10.1007/s40820-020-0407-5
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effects, framework flexibility), that have been well studied 3.6 Hybrid Gas Sensors Based on Combined

on rGO, polymers (e.g., metal-induced ordered microporous Mechanisms

polymers (MMPs), covalent-organic frameworks (COFs),

conjugated mesoporous/microporous polymers (CMPs)),  In many cases, multi-forms working on the hybrid materi-
MOFs, can be introduced to chemi-resistors for advanced  als can simultaneously and dramatically improve sensi-
sensing performances. The representative works are sum-  tivity and responsivity. When the heterojunction barrier

marized in Table 5. (the SnO,/rGO heterostructure interface) was combined
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Table 5 Representative works based on molecular probing and sieving effect

Materials Gas detection Detection range Work temperature Refs.
ZnO@ZIF-71 Benzene 10-200 ppm 250 °C [258]
ZnO@ZIF-CoZn Acetone 0.25-100 ppm 260 °C [259]
ZnO@ZIF-8 H, 5-50 ppm 250 °C [260]
ZnO@ZIF-8 Propene 250 ppm RT [261]
Ethene
Polyoxometalate @ZIF-8@ZnO HCHO 25-200 ppm RT [262]
ZnO@ZIF-8 HCHO 10-200 ppm 300 °C [263]
ZnO@ZIF-8 H, 10-50 ppm 300 °C [264]

with catalytic Pt, sensitivity of the SnO,/rGO hybrids
to H, was greatly enhanced (Fig. 18a—e) [74]. Hydro-
gen ranging from 0.5 to 3% in air could be quantitatively
detected at near RT with response and recovery times of
3-7 and 2-6 s, respectively. Furthermore, when the cata-
lytic effect was co-working with the p-n heterojunctions
and porous structure (Fig. 19a), Co;0,~PdO loaded on
n-SnO, hybrid hollow nanocubes (Fig. 19b) reached selec-
tivity and response amplitudes for the detection of acetone

© The authors

superior to those MOF-derived metal oxide sensing lay-
ers previously reported. Accordingly, the sensor arrays
(Co;0,-loaded n-SnO, HNCs and Co;0,-PdO-loaded
n-SnO, HNCs) can clearly distinguish 1 ppm humid
acetone molecules among the seven interfering analytes
(Fig. 19¢). The reason is electron migration from n-SnO,
to PdO or p-Co;0, in the multi-junctions significantly
influencing the electron depletion regions, which leads to
the superb sensitivity (Fig. 194, e).

https://doi.org/10.1007/s40820-020-0407-5
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When the catalytic effect co-worked with the molecu-
lar sieving effect, improved selectivity (anti-interferon)
with enhanced sensitivity can be achieved by coating a
layer of hydrophobic and thermally catalytic bimetallic
ZIF-CoZn thin film on ZnO to form core-sheath MOX @
MOFs nanowire arrays (NWAs) (Fig. 20a) [76]. The bime-
tallic ZIF-CoZn MOF sheathes gave good thermal stability
(ZIF-8(Zn)) and excellent thermal catalytic ability on ZnO
(ZIF-67(Co)), as well as hydrophobic channels. By com-
bining their advantages, the ZnO @ZIF-CoZn preparation
showed greatly enhanced performance on selectivity (good
anti-humidity, Fig. 20b) and also on its response, response
and recovery behavior and working temperature (Fig. 20c).
More complicated hybrid nanostructures containing MOX,
plasmonic/catalytic NMs, and hydrophobic MOFs, i.e.,
the dual-functional Au@ZnO@ZIF-8 Janus structure
(Fig. 20d, e), have been fabricated [77]. Au@ZnO @ZIF-8
hybrids had enhanced selective adsorption, detection and
oxidation of HCHO and prevented interference from gases
such as H,O and toluene (Fig. 20f), where Au NRs helped
to generate charge carriers on a ZnO surface under visible-
light irradiation. The representative works are summarized
in Table 6.

SHANGHAI JIAO TONG UNIVERSITY PRESS

4 Summary and Perspective
4.1 Summary of Hybrid Gas-Sensitive Materials

The current progress report reviews advances and the advan-
tages of the chemi-resistive hybrid nanomaterials compared
with the single constituent, according to five main sensing
mechanisms: manipulating/constructing heterojunctions,
catalytic reaction, charge transfer, charge transport, molec-
ular binding/sieving, and their combinations. Table 7 lists
typical chemi-resistive materials for hybrid gas sensors cat-
egorized by types of materials and conductivity.

4.2 Applications of Chemi-Resistive Sensor-Based
e-nose

As the first commercial gas sensor, metal oxide-based
chemi-resistors still occupy a leading role in both fundamen-
tal researches and commercial devices. Various commercial
chemi-resistive gas sensors based on single or hybrid mate-
rials have been developed for the detection toward target
gases (toxic, flammable, VOCs, explosive, H,, etc.) ranging
from sub-ppm to saturated vapor, which are widely used
in fields including environment monitoring, medical care,

@ Springer
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food industry, agriculture production, and public security.
The versatile commercial chemi-resistive gas sensors are
introduced but not limited as follows.

Some e-nose systems comprised of chemi-resistive sensor
arrays have succeeded in the application of medical care.
Commercial e-nose PEN3 (Airsense Analytics GmbH,
Schwerin, Germany) made up of a gas sampling unit and
a sensor array (10 different metal oxide thick film sensors
(MOS)) can screen colorectal cancer (CRC) and polyps
[167]. Another 14 commercial gas sensor-integrated e-nose
system could generate characteristic “breath fingerprints” by
exhalation components and could diagnose the lung disease
through pattern recognition of a “breath fingerprint.” Those
sensors categorized as MOS, hot wire gas, catalytic com-
bustion gas, and electrochemical gas sensors are produced
by the manufacturers, Hanwei (Fig. 21a), Figaro (Fig. 21b)

© The authors

[168], Winsen, Nemoto and Alphasense [169]. Aeonose in
(Fig. 21¢) [170] is a CE-certified, handheld, and battery-
powered e-nose device designed by a Zutphen Company in
Netherlands. The aeonose comprises three micro-hotplate
metal oxide sensors and a pump to detect gastric cancer
from exhaled breath [171]. Sunshine Haick Ltd. have suc-
cessfully designed the sensor arrays to diagnose lung and
gastric cancer via pattern analysis of exhaled VOCs, which
has made great and has a perfect perspective. Other repre-
sentative commercial e-nose in clinical diagnosis of complex
regional pain, diabetics, head and neck cancer, dyskinesia,
and prostate cancer are summarized in Table 8.
Commercial e-nose has acted as an indispensable instru-
ment for the rapid, accurate, and overall-process assessments
of food health and quality aim at adulterated counterpart,
contamination and spoilage [172]. An PEN-2 e-nose (WMA

https://doi.org/10.1007/s40820-020-0407-5
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Table 6 Representative works based on combined mechanisms

Materials Gas detection Detection range Work temperature Refs.
Co;0,/PEI-CNTs CO 5-1000 ppm RT [265]
HC(NH,),Snl;/SnO,/Pt HCHO 5-100 ppm 80 °C [266]
PdO/SnO,/CuO CO 100-2000 ppm 200 °C [267]
Pd/ZnO/In,0, H, 50-172 ppb 350 °C [268]
rGO/ZnO/Pd CH, 25-500 ppm RT [269]
Pt/ZnO/g-C5N, Ethanol 0.5-50 ppm 250 °C [270]
NO, 0.5-15 ppm 150 °C
Au/Cu,0/ZnO NO, 5-1000 ppb RT [271]
Ag/SnO,/tGO Ethanol 100-2000 ppm 280 °C [272]
TiO,/InVO, NH, 10-1000 ppm 250 °C [273]
Pd-Sn0O,/rGO CH, 800-1200 ppm RT [274]
Au@In,0;@PANI NH, 0.5-100 ppm RT [275]
Au-ZnO@ZIF-DMBIM Acetone 0.0001-1000 ppm RT [203]
SnO,/a-Fe,05/Pt Styrene 0.25-1.25 ppm 206 °C [276]

Airsense Analysentechnik GmbH, Schwerin, Germany)
composed of 10 different metal oxide sensors was utilized to
monitor the adulteration of milk with water or reconstituted
milk powder [173]. Also, the PEN-2 is used to monitoring

SHANGHAI JIAO TONG UNIVERSITY PRESS

the change in volatile production of mandarin during dif-
ferent picking-date [174]. Meanwhile, PEN-2 is used to
characterize espresso coffees brewed with different thermal
profiles [13]. MOS sensors manufactured by Figaro (Figaro
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Table 7 Typical chemi-resistive materials for hybrid gas sensors

Types of chemi- Types of conductivity

resistive materials

p nlp

Inorganic compounds ZnO, SnO,,TiO,, MoO;, WO;, In,0;,

V,05, Ta,05, Nb,Os, RuO,, MoS,,

NiO, Co;0,, TeO,, CuS, Cr,0;, Sb,0;, CuO, Cu,0,
Mn, 03, CeO,, PdO, Ag,0, Bi,0;, CoPc. WS,,

Fe,0;

ZnSnO, MoSe,, LaFeO; [277]
Organic compounds ~ PTCDI-Ph PPy, PEDOT, PANI, p-6P, Ti,C,T, [278] PADS [279]  Polyphenylene [280]
MOFs CuHITP Cu-HHTP, NiHITP, NH,-UiO-66 [281],Cu-HHTP-
THQ [204]
Others CNTs, BP, rGO
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Fig. 21 Schematic of the diffferent commercial e-nose. a Photographic image of Hanwei e-nose. Reproduced with permission [212]. Copyright
2017, Springer. b E-nose system “NOS.E” produced by Figaro Engineering Inc. [168]. Copyright 2018, IEEE. ¢ Aeonose to diagnosis pros-
tate cancer. Reproduced with permission [170]. Copyright 2018, European Association of Urology. d E-nose produced by institute of Physics
Technology and Information, Spanish Council for Scientific Research. Reproduce with permission [213]. Copyright 2018, Elsevier Ltd. e The
picture of Cyranose 320. Reproduce with permission [214]. From Chang and Heinemann, Copyright 2018, ASABE. f The sensors manufactured
by Hanwei Sensors. Reproduced with permission [215]. Copyright 2019, Elsevier Ltd. g E-nose produced by Figaro Engineering, Inc., Hanwei
company and FIS Inc. Reproduced with permission [216]. Copyright 2018, Elsevier Ltd. h E-nose based on MOS TGS and FIS sensors. Repro-
duced with permission [217]. Copyright 2018, sensors. I Fox 3000 electronic nose system. Reproduced with permission [218]. Copyright 2017,

Elsevier Ltd. j MQ-7 (TORO) sensor model [219]
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Table 8 Applications of electronic nose instruments for disease diagnosis
Diseases Objective E-nose configuration Sensor type  Sensor arrays Multivariate data Refs.
analysis
Armpit body odor Detection and classifica- Tagushi (TGS) gas MOS 5 PCA [282]
tion of human body sensor from Figaro
odor Engineering Inc.
Bile acid diarrhea Identify BAD in volatile The FOX 4000 e-nose ~ MOS 18 LDA [283]
(BAD) organic compounds from Alpha MOS,
Toulouse, France
Lung cancer Diagnosing lung cancer Cyranose 320 from CP 32 LDA,KNN, PNN, NB, [284]
in exhaled breath Smiths Detection Inc., and SVM
Edgewood, MD, USA
Head/neck and lung Discriminating head and Aeonose from Zutphen, MOS 3 PARAFAC and [285]
carcinomas neck carcinoma from the Netherlands TUCKER
lung carcinoma
Prostate Cancer The detection of Aeonose from Zutphen, MOS 3 ANN [170]
prostate cancer from the Netherlands
exhaled breath
Complex Regional Pain  Diagnosing complex Aeonose from Zutphen, MOS 3 ANN [286]
regional pain syn- the Netherlands
drome
Mycobacterium tuber-  The detection of myco- ModelBH114-Blood- CP 14 PCA [287]
culosis bacterium tuberculosis  hound sensors from
Leeds, UK
Patients breath The VOCs from breath  E-nose from Sunshine GNPs 8-20 PCA, LDA [112, 288]
Haick medical Co. capped

with thiols

MOS metal oxide semiconductor, CP conducting polymer, GNPs gold nanoparticles

Inc., Japan) were used to recognize odors emitted from dif-
ferent stages in a waste water treatment plant [175]. Tagushi
gas sensor based on metal oxide semiconductor from Figaro
Engineering Inc. is used to classify the tea aroma [176].
Cyranose 320 in Fig. 21e that consists of an array of 32 thin-
film carbon-black conducting polymer sensors was used to
identify odor emitted from dairy operations. The portable
e-nose based on thin-film semiconductor (SnO,) sensors
(Hanwei Sensors) in Fig. 21f can perform early detection
of wine spoilage thresholds in routine tasks of wine qual-
ity control. An e-nose system (Fig. 21g) was used to detect
detergent powder in raw milk. Representative applications
are summarized in Table 9.

The application of commercial e-nose to monitor vola-
tile compounds in the environment both indoor and out-
door provides a reliable solution. Single semiconductor gas
sensor GGS 10331 (produced by Umwelt Sensor Technik)
was made with a semiconductor sensing layer on Al1203
substrate to predict the concentration of ammonia under
humidity interference [177]. Tagushi (TGS) gas sensor

SHANGHAI JIAO TONG UNIVERSITY PRESS

(Figaro Engineering Inc.) was applied to detect NH;, CO,
H,, C,HO, C,H,,, C;Hg, CH,, alcohol, and solvent vapors
and the accuracy was 100% [178]. MQ-7 (Fig. 21j) is a com-
mercial electronic nose for monitoring CO. Portable elec-
tronic noses in Fig. 21d were used to classify pollutants in
water. Similarly, the commercial e-nose is widely used to
identify the toxic wastes, soil/water pollution, indoor volatile
organic compounds, etc. Table 10 summarizes the recent
applications of e-nose for monitoring environment.

E-nose is widely used in agricultural to analyze growth,
classify seeds, detect the maturity, monitor quality, which
promoted agricultural modernization and saved labor [2].
Eight MOS sensors produced by FIS (Osaka, Japan), MQ
(Hanwei, China), and TGS (Figaro Engineering Inc.) were
applied for classifying cumin, caraway, and other seeds
[179]. Similarly, e-nose based on MOS TGS and FIS sen-
sors (Fig. 21h) were distinguished Iranian Rosa damascena
essential oils. An e-nose FOX 4000 (Alpha MOS, Tou-
louse, France) was chosen to analyze ginseng at different
stages [180]. An e-nose FOX 3000 (Fig. 21i) was applied
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Table 9 Applications of electronic nose for monitoring foods and beverage

Product Objective E-nose configuration Sensor type Sensor arrays Multivariate data analysis ~ Refs.
Black tea Monitoring of black tea Tagushi (TGS) gas sensor  MOS 8 PCA, 2NM MDM [289]
fermentation process from Figaro Engineer-
ing Inc.
Pork Measurement of total Tagushi (TGS) gas sensor  MOS 11 PCA and BP-ANN [290]
volatile basic nitrogen from Figaro Engineer-
(TVB-N) in pork meat ing Inc.
Green tea Identification of coumarin- E-nose device (FF-2A 0SS 10 PCA, CA [14]
enriched Japanese green Fragrance & Flavor Ana-
teas and their particular lyzer, Shimadzu, Japan)
flavor
Milk Aroma profiling of milk A PEN-2 e-nose from MOS 10 PCA, LDA and 4ANN [291]
adulteration Win Muster Airsense
Analytics Inc., Schwerin,
Germany
Meat Analysis adulteration of A PEN-2 e-nose from MOS 10 CDA, BDA, PLS, MLR, [292]
minced mutton with pork ~ Win Muster Airsense BPNN
Analytics Inc., Schwerin,
Germany
Ham Differentiation of hams A PEN-2 e-nose from MOS 10 PCA [293]
marked Win Muster Airsense
Analytics Inc., Schwerin,
Germany
Cherry tomato Juice Classification with overripe A PEN-2 e-nose from MOS 10 PCA, CA [294]
tomato juice Win Muster Airsense
Analytics Inc., Schwerin,
Germany
Tea Characterizing the degree A PEN-2 e-nose from MOS 10 PCA and MLP [295]
of invasion of tea trees Win Muster Airsense
Analytics Inc., Schwerin,
Germany
Sausage Evaluation of lipid oxida- A PEN-3 e-nose from MOS 10 SVM, ANN, PLSDA, [296]
tion of Chinese-style Win Muster Airsense MLR
sausage Analytics Inc., Schwerin,
Germany
Mango Quality rapid determination E-nose from HANWEI MOS 8 PCA and SR [297]
of mango Electronics Co.
Chicken fat Rapid measuring of oxi- The FOX 4000 e-nose from MOS 18 APLSR and ANOVA [298]
dized chicken fat Alpha MOS, Toulouse,
France
Honey Identify the botanical The FOX 3000 e-nose from MOS 18 PCA, DFA,LS-SVM and  [299]
origin of honeys Alpha MOS, Toulouse, PLS
France
Orange juice Classification of Valencia ~ The FOX 3000 e-nose from MOS 12 PCA, FDA [300]
orange juices Alpha MOS, Toulouse,
France
Wine Geographical origin con- The FOX 3000 e-nose from MOS 12 LDA [301]
firmation Alpha MOS, Toulouse,
France
Coffee Study the aromatic profile =~ oFOX from Alpha MOS,  MOS 6 PCA [302]
of espresso coffee as a Toulouse, France
function of the grinding
grade and extraction time
Cheese Authenticity of cheese EOS 507 from Sacmi MOS 6 PCA, ANN [303]
marked with Picorino Imola S.C., Imola, Bolo-
gna, Italy
© The authors https://doi.org/10.1007/s40820-020-0407-5
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Table 9 (continued)

Product Objective E-nose configuration Sensor type Sensor arrays Multivariate data analysis ~ Refs.
Tea Classification of pure Sri Model 3320 applied sensor  MOSFET 10 PCA, PLS [304]
Lanka tea lab emission analyzer MOS 2
from applied Sensor Co.,
Linkoping, Sweden
Honey Botanical origin and adul- ~ Cyranose 320 from Intel-  CP 32 PCA, LDA [305]
teration with cane sugar ligent Optical Systems
Inc., CA, USA

0SS oxide semiconductor sensors, MOSFET metal oxide semiconductor field-effect transistor

Table 10 Applications of electronic nose in environmental monitoring

Target gases Objective E-nose configuration Sensor type Sensor arrays Multivariate data Refs.
analysis
Ethanol, acetone The detection of etha-  Tagushi (TGS) gas sen- MOS 4 MoGC and K-NNC [306]
nol and acetone in sor from Figaro Engi-
outdoor courtyard neering Inc. (TGS2600,
TGS2602,TGS2611TGS2620)
Air The quantification Figaro TGS2602 air contaminant MOS 14 PLS-2 calibration [307]
of VOC at indoor sensor models
environments
Air The detection of NH;, A sensor array composed of MOS 7 LDA, PCA, DT, KNN [178]
CO, H,, C,H,O, TGS826,TGS2442,TGS2600,
C,H,,, C5Hg, CH,, TGS2602TGS2610,TGS2611,
Alcohol TGS2620
Air The detection of TGS2620 MOS 1 N/A [308]
xylene
Air The detection of e-nose consists of TGS813, MOS 8 PLS and PCR [309]
n-hexane, acetone, TGS2106, TGS2444, TGS244,
and toluene TGS822, TGS2602, TGS2201,
TGS2201
Air The detection of A gas e-nose system based on MOS 3 ANNSs [310]

methane, hydrogen, TGS2611, TGS821, TGS2442
carbon monoxide

Inorganic analytes Analysis in landfill E-nose from Alphasense Inc. MOS 7 LDA [311]
emissions and industrial area

chemical emissions
monitoring

Toxic wastes The detection of GGS10331 from Umwelt Sensor MOS 1 PCA and PLS [177]
ammonia Technik

Air The detection of NO,  MiCS-2714 produced by SGX MOS 1 N/A [312]

Sensortech

Odorless gases The detection of CO MQ sensors from Hanwei Elec- MOS 6 ANN and LSR [219]

and CH, tronics Co.

to characterize and classify seven Chinese robusta coffee  or below) [181]. Figaro Engineering Inc. produce an e-nose
cultivars. Commercially available chemical sensors intended ~ comprised of eight MOS sensors to discriminate and quan-
for agriculture are summarized in Table 11. tify different chemical warfare agents mimics [182]. More

Some commercial e-noses are attempted to detect explo-  expectations in applications are also possible in the future.
sives with ultra-low saturated concentration (parts-per-billion
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Table 11 Applications of electronic nose in agriculture

Product Objective E-nose configuration Sensor type  Sensor arrays ~ Multivariate data analysis Refs.
Sesame oil Detection adulteration in A PEN-2 e-nose from Win MOS 10 PCA, FLT, Step-LDA, SFW,  [313]
sesame oil Muster Airsense Analytics PNN, BPNN, GRNN
Inc., Schwerin, Germany
Olive oils The detection of olive oils A PEN-2 e-nose from Win MOS 10 PCA [314]
Muster Airsense Analytics
Inc., Schwerin, Germany
Red raspberries The aromatic characteristics A PEN-2 e-nose from Win MOS 10 PCA [315]
of red raspberries Muster Airsense Analytics
Inc., Schwerin, Germany
Compost maturity The monitoring of composting A PEN-3 e-nose from Win MOS 10 PCA [316]
process produces Muster Airsense Analytics
Inc., Schwerin, Germany
Hyssopus officinalis Discriminate the accessions A PEN-3 e-nose from Win MOS 10 PCA and HCA [317]
Muster Airsense Analytics
Inc., Schwerin, Germany
Rice Estimation of the age and A PEN-3 e-nose from Win MOS 10 PCA, LDA, PNN, and BPNN [318]
amount of brown rice plant Muster Airsense Analytics
Inc., Schwerin, Germany
Jujubes Characterization of different A PEN-3.5 e-nose from Win ~ MOS 10 PCA and LDA [319]
varieties of Chinese jujubes Muster Airsense Analytics
Inc., Schwerin, Germany
Virgin olive oil Adulteration with hazelnut oil The FOX 4000 e-nose from MOS 18 PCA and PLS [320]
Alpha MOS, Toulouse,
France
Ginseng Discrimination of American The FOX 4000 e-nose from MOS 18 PCA and PLS [321]
ginseng and Asian ginseng Alpha MOS, Toulouse,
France
Flax seed oil Differently processed oils for ~ The FOX 3000 e-nose from MOS 18 PCA [322]
fraud detection Alpha MOS, Toulouse,
France
Lonicera japonica Quality control of Lonicera The FOX 3000 e-nose from MOS 12 LDA, PCA, and RBF-ANN [323]
Japonica stored for different Alpha MOS, Toulouse,
period of time France
Tomato Comparison of different stages The FOX 4000 e-nose from MOS 18 PCA and ANOVA [324]
of tomato Alpha MOS, Toulouse,
France
White pepper The chemical and flavor quali- a-Gemini from Alpha M.O.S. MOS 6 PCA [325]
ties of white pepper SA, Toulouse, France
Virgin olive oil Confirmation of geographical Model 3320 applied sensor MOSFET 10 PCA, CP-ANN [326]
origin and authentication lab emission analyzer from  )j0g 12
applied Sensor Co., Linkop-
ing, Sweden
Asphalt odor Asphalt odor patterns in hot Cyranose 320 from Intelligent CP 32 Polar plots, PCA [327]
mix asphalt production Optical Systems Inc., CA,
USA
Plant Pest and Disease The discrimination of plant Model ST214 from Scensive ~ OCP 13 PCA, DFA, CA [328]
pest and disease Technologies Ltd., Norman-
ton, UK
Odors emissions Monitoring of odors from a EOS from Sacmi Group, MOS 6 kNN [329]

composting plan

Imola, Italy

OCP organic conducting polymer

4.3 Challenges and Perspectives improvements. Below is a summary of the main rules
for improving the performance of hybrid material-based
Although excellent advances in both e-nose system and  gas sensors (details see the summary paragraph of each
chemi-resistive sensory unit have been reached in the  section):

field during the last few years, there is still room for

© The authors https://doi.org/10.1007/s40820-020-0407-5



Nano-Micro Lett. (2020) 12:71

Page 29 of 43 71

For sensors based on heterojunctions (potential energy
barrier manipulation), the more uniform and the larger
the contact area of heterojunctions and charge transfer
hybrids, the higher the response, resulting in faster speed/
lower operating temperature, e.g., Fe,05/TiO, tube-like
quasi-1D nanostructures (n—n) [114], n-ZnO/p-CoPc
[119], CeO,—In,0; hollow spheres with anti-humidity
properties [113], and CdS-ZnO [123, 124].

For sensors based on catalytic effect assistance, the higher
the potential energy barrier tuning, the higher the response,
e.g., Pd/Sb-Sn0O, [89, 90].

For sensors based on charge transfer, the more dispersion
uniformity and the smaller size of catalysts on host-sensing
materials, the higher the response, giving faster speed and
lower operating temperatures, e.g., SnO, QDs/rGO hybrids
[109], rtGO/MoS, aerogel [61], and PANI/rGO [63].

For sensors based on regulation of charge carrier trans-
port, the thinner and the more defect-rich of the hybrid
film (e.g., suppression of original gas-off current in
current-increased gas sensor), the higher and faster the
responses obtained, e.g., PTCDI-Ph/p-6P ultrathin film
[64], sandwiched PMMA/Pd/PMMA [110], and MSP-
covered CNTs [80].

For sensors based on molecular binding/sieving, the more
selective and uniform dispersion of molecular binding/siev-
ing guests, the higher the selectivity, e.g., APTES-modified
porous WOj; nanotubes [72], the oleic acid SAM-modified
PANI [82], the ZnO@ZIF-CoZn NWAs [76] P-O3 NTs
(10%)@APTES [71].

Improving the performance requires better understand-
ing of the mechanism. Recently, most sensing mechanism
represented in the research articles is “possible mechanism”
based on the results of comparative tests instead of direct
observations. Exactly, the latter one is more trustable and
solid results to support the mechanism study, e.g., in situ
FTIR [183, 184], in situ Kelvin probe [185], in situ STM
[186, 187], in situ TEM [188, 189]). In addition, Theoreti-
cally studies (such as DFT simulation) [190], are also helpful
for researchers to understand the interaction between the
gas analyte and sensitive materials, the succedent electronic
structure changes, or band gap regulation in heterojunction,
or charge transfer, etc., which can guide the orientation of
materials design [70, 190-195]. Otherwise, learning theo-
retical studies toward hybrid catalyst designs can inspire the
further researches on hybrid gas sensing due to the similar

| SHANGHAI JIAO TONG UNIVERSITY PRESS

surface physical/chemical science, band gap theories, and
charge transfer process [196-201].

Controlling the fluidic behavior of gas [202], enhancing
the anti-interferon ability by loading novel porous sieving
materials (e.g., MOF, COF) [203-206], screening the cross-
talk (such as deformation [207, 208]) by special micro-/
nanostructures, deeply mining the features of sensing signal
[209] (e.g., response, area of peak, and speed), and enhanc-
ing catalysis effect using small NPs, clusters, or even single-
atom catalyst [108] are the long-term challenges of hybrid
gas-sensing materials to adapt the applications under real-
world conditions [210, 211]. The advances in knowledge in
all our endeavors can be a foundation and useful experience
for sensing technology, surface science, catalysis, fluidic
mechanics, and microelectronics.
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