
Vol.:(0123456789)

1 3

Recent Advances of Persistent Luminescence 
Nanoparticles in Bioapplications

Shuqi Wu1, Yang Li1, Weihang Ding1, Letong Xu1, Yuan Ma2, Lianbing Zhang1 *

 * Lianbing Zhang, lbzhang@nwpu.edu.cn
1 School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern 

Polytechnical University, Xi’an 710072, People’s Republic of China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, 

People’s Republic of China

HIGHLIGHTS

• Comprehensive summary on properties, persistent luminescence mechanism and synthesis of persistent luminescence nanoparticles.

• Unique properties and advantages of persistent luminescence nanoparticles for chem/biosensing, bioimaging and imaging-guided 
therapy.

• New organic and polymeric persistent luminescence nanoparticles with long afterglow lifetime for in vivo optical imaging.

ABSTRACT Persistent luminescence phosphors are a novel 
group of promising luminescent materials with afterglow prop-
erties after the stoppage of excitation. In the past decade, persis-
tent luminescence nanoparticles (PLNPs) with intriguing optical 
properties have attracted a wide range of attention in various 
areas. Especially in recent years, the development and applica-
tions in biomedical fields have been widely explored. Owing 
to the efficient elimination of the autofluorescence interfer-
ences from biotissues and the ultra-long near-infrared afterglow 
emission, many researches have focused on the manipulation 
of PLNPs in biosensing, cell tracking, bioimaging and cancer 
therapy. These achievements stimulated the growing interest in 
designing new types of PLNPs with desired superior charac-
teristics and multiple functions. In this review, we summarize 
the works on synthesis methods, bioapplications, biomembrane 
modification and biosafety of PLNPs and highlight the recent 
advances in biosensing, imaging and imaging-guided therapy. 
We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, 
the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical 
applications.
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1 Introduction

Afterglow or persistent luminescence materials can store 
energy from UV light, visible light, X-ray or some other 
excitation sources and then gradually release it by a pho-
tonic emission [1–3]. The persistent emission can last 
for minutes, hours or even days after the stoppage of the 
excitation. The discovery of persistent luminescence phe-
nomenon dates back to the Song Dynasty of China. Some 
paintings or so-called luminous pearls had incomprehensi-
ble magic to glow in the dark [4]. At the beginning of the 
seventeenth century, an Italian shoemaker first described 
the famous Bologna stone which emitted yellow to orange 
afterglow in darkness. Later, the natural impurities of BaS 
were found to play an important role in this persistent 
luminescence phenomenon. In 1996, Matsuzawa et al. 
reported a new phosphor of metallic oxide  (SrAl2O4:Eu2+, 
 Dy3+) which showed extremely bright and long phospho-
rescence [5]. Since then, persistent luminescence materials 
have been rapidly developed and lots of phosphors with 
different matrixes and doped ions have been reported. Up 
to now, inorganic metal compounds, metal–organic frame-
works, some organic composites and polymers have been 
found to have long afterglow properties.

The unique properties of persistent luminescence materi-
als mainly come from two kinds of active centers involved: 
the emitter centers and the trap centers [6–8]. The emitter 
centers can emit radiation after excitation. So, the emission 
wavelength of a persistent luminescence phosphor depends 
upon the emitter. The trap centers are formed due to impuri-
ties, lattice defects, or various co-dopants. They usually do 
not emit radiation, but store the excitation energy for some 
time and then gradually release it to the emitters by ther-
mal or other physical activation. Therefore, the persistent 
intensity and time are mainly determined by the traps [2]. 
In design of persistent luminescence materials, a suitable 
emitter center and a proper host that can create appropriate 
traps and release long-lasting persistent luminescence (PL) 
should be considered [6].

There are persistent luminescence materials for each of 
the primary colors. Theoretically, we can synthesize persis-
tent luminescence materials emitting any color by adjusting 
the chemical components. The most widely used and studied 
matrixes include silicates [9], gallium oxides [10], galloger-
manates [11], aluminates [12] and so on [13–16]. Among 

them,  CaAl2O4:Eu2+,  Nd3+ and  SrAl2O4:Eu2+,  Dy3+ with 
overwhelming strong and long-lasting PL have been com-
mercialized and widely used in various fields [2, 17]. With 
the fast development of persistent luminescence materials 
in recent years, some new phosphors with special compo-
sitions have been developed for multiple bioapplications, 
such as  Ca3Ga2Ge3O12:Cr3+,  Li5Zn8Al5Ge9O36:Cr3+ and (Li, 
Na)8Al6Si6O24(Cl, S)2:Ti3+ [18–20]. Tu et al. reported the 
rare-earth ions  (Pr3+,  Nd3+ and  Gd3+)-doped  Li2ZnGeO4 
with better afterglow properties due to their larger defect 
density values [21]. Furthermore, up-converting ions 
 Yb3+-Er3+-incorporated  Zn3Ga2SnO8:Cr3+ showed an obvi-
ous near-infrared (NIR)-emitting PL after the stoppage of 
980-nm laser irradiation [22]. These upconversion-persistent 
luminescence materials combined the advantages of both 
upconversion and persistent luminescence, paving a new 
way for biomedical applications [23–25].

Persistent luminescence materials emitting visible light 
have been successfully commercialized and widely used in 
security signs, traffic signs, dials, luminous paints and so 
on. In recent years, the deep-trap persistent luminescence 
materials with the unique characters of energy storage and 
controllable photon release showed great promising potential 
in the application of information storage, multilevel anti-
counterfeiting and advanced displays [26–28]. Although the 
intensity and afterglow time of nanosized persistent lumines-
cence nanoparticles (PLNPs) were much lower than the bulk 
materials [29, 30], PLNPs have been widely investigated 
as optical probes in bioimaging and biosensing due to the 
nanoeffects, the efficient cell penetration ability, the better 
biocompatibility, etc. [31]. Unlike conventional fluorescent 
probes (e.g., organic dyes, quantum dots, or upconversion 
nanoparticles) with very short lifetime, PLNPs can be used 
without constant in situ excitation. The persistent lumines-
cence signals can be easily captured in the bioluminescence 
mode on imaging instruments. Furthermore,  Cr3+-doped 
PLNP with NIR emission open an extensive application 
in vivo, as the emission matches well with the first biologi-
cal window (650–950 nm) and they can be re-activated with 
white or red LED light [3, 32–34]. The absence of autofluo-
rescence background interferences and the NIR emission 
gave a high signal-to-noise ratio (SNR) and a better in vivo 
penetration depth. Through size and emission regulation, as 
well as surface modifications, PLNPs have been extensively 
used in biosensing, bioimaging and imaging-guided therapy 
as a new generation of advanced optical materials [35].
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Besides the most studied biosensing and bioimaging, sci-
entists developed many novel PLNPs-based nanocomposites 
for special applications, such as antibacterium, latent fin-
gerprint imaging and photocatalytic pollutant degradation 
[36–38]. In recent years,  Nd3+-doped PLNPs with the NIR 
emission located in the second (1000–1400 nm) or the third 
(1500–1800 nm) biological window have been developed to 
achieve high imaging depth and sensitivity [39, 40]. What 
is more, some organic PLNPs show promising advantages 
for in vivo afterglow imaging and detection [41, 42]. All 
these achievements make PLNPs novel multifunctional tools 
in bioapplications [43, 44]. A number of excellent reviews 
have already been published with the focus on the synthesis, 
surface engineering and biological applications of PLNPs. 
In 2017, Wang et al. summarized the recent achievements 
in biosensing, bioimaging and cancer therapy of PLNPs 
[45]. Sun et al. summarized their systematic achievements 
in the bioapplications of PLNPs from biosensing/bioimag-
ing to theranostics. They developed target-induced forma-
tion or interruption of fluorescence resonance energy trans-
fer (FRET) systems for biosensing and imaging of cancer 
biomarkers without autofluorescence interferences. They 
decorated targeting ligands or specific functional groups 
on PLNPs for tumor-targeted imaging, multimodal imaging 
and cancer therapy. They also proposed the design princi-
ple and comprehensive strategies for guiding and promot-
ing further development of PLNPs in biological science 
and medicine [46]. Liang et al. summarized the design and 
applications of NIR-emitted PLNPs and emphasized their 
luminescence mechanism [47]. However, a review summa-
rizing recent advances in synthesis methods, new types of 
organic/polymeric composition, biomembrane coating tech-
niques, biosafety and bioapplications of PLNPs is lacking. 
The aim of this review is to present a comprehensive discus-
sion on the synthesis and functionalization of PLNPs and 
the recent progress on PLNPs-based biosensing, bioimaging 
and therapy applications. This review further explores the 
future developments of PLNPs on the clinical applications 
(Scheme 1).

2  Typical Synthetic Procedures for PLNPs

In the past decade, various kinds of PLNPs have been 
synthesized by the solid-state synthetic methods with less 
control over the size and the shape of the products. As a 

result, the endured long reaction time and high annealing 
temperature of the synthesis make the phosphors bulky and 
irregular, which limit the usage in biomedical fields [34]. 
Therefore, new size- and shape-controllable synthetic meth-
ods have been developed to prepare nanosized PLNPs, such 
as sol–gel methods, template methods, hydrothermal/solvo-
thermal methods and other wet-chemical synthesis methods 
[48–57]. In this section, we will discuss these typical syn-
thetic approaches for PLNPs.

2.1  Sol–Gel Methods

Compared with the solid-state synthetic methods, the sol–gel 
methods can offer better purity, homogeneity and yield stoi-
chiometric powders at relatively lower annealing tempera-
ture [58]. The synthetic conditions, including the reaction 
time, pH, temperature, concentration of the surfactants, 
chemical composition, etc., can be flexibly adjusted with the 
wet chemical synthesis. Abdukayum et al. reported the syn-
thesis of NIR-emitting PLNPs by a citrate sol–gel method 
without the need for a reducing atmosphere. The authors 
assessed the effects of pH, annealing temperature, sinter time 
and composition on the luminescence intensity of PLNPs. 
It was found that the optimal pH of the starting solution is 
about 5. The increase in calcination time can promote the 
NIR persistent luminescence intensity at 1000 °C with the 
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proper composition of  Zn2.94Ga1.96Ge2O10:Cr0.01Pr0.03 [33]. 
The resulting powder is usually in micrometer size scale, 
highly agglomerated and morphologically irregular. The 
main reason is due to the uncontrol over the nanoparticle 
growth stage and the agglomeration during the calcination 
with high temperature [59, 60]. Now, the wet grinding and 
selective sedimentation method have been used to isolate 
the smallest nanoparticles from the bulk materials, which 
suffers greatly from the trivial and time-consuming proce-
dures with very low yield. The synthesized nanoparticles are 
usually non-spherical with a polydisperse size distribution 
in the range of 40–150 nm,which undoubtedly limits their 
advanced applications in biomedical fields.

2.2  Template Methods

Zhang and co-workers reported several works about the syn-
thesis of PLNPs by a template method using mesoporous 
silica nanospheres (MSNs) [61–63]. MSNs can serve as both 
the morphology-controlling templates and the silicon source 
of some silicate PLNPs. The metal ions were impregnated in 
the mesopores of MSNs templates, followed by the anneal-
ing under certain conditions to form PLNPs with uniform 
morphologies and narrow size distributions. The template 
method can be easily transferred to synthesize PLNPs with 
different composition. The diameter and morphologies can 
be flexibly controlled by changing the MSNs templates [64]. 
However, up to now, MSNs was the only template that has 
been successfully used for synthesis of PLNPs. In addition, 
the high calcination temperature could destroy the surface 
functional groups, which may lead to the undesirable accu-
mulation and poor dispersibility of PLNPs. As a result, the 
novelty and biomedical application of synthesizing func-
tional PLNPs by template method are restricted.

2.3  Synthesis of Monodispersed PLNPs

The controlled synthesis of monodispersed and small sized 
PLNPs is essential for extended bioimaging and therapeu-
tic applications, as large hydrodynamic-sized (> 100 nm) 
PLNPs are often quickly taken up and trapped in the reticu-
loendothelial system (RES). Therefore, it remains challeng-
ing to create nanosized PLNPs with high biocompatibility. 
The hydrothermal/solvothermal method, the non-aqueous 
sol–gel methods, the bi-phasic synthesis methods and other 

synthetic procedures are used to prepare monodispersed 
PLNPs [65–67].

In 2015, Li and co-workers first developed a direct aque-
ous-phase chemical synthesis route of NIR PLNPs (Fig. 1a). 
Their method leads to monodispersed PLNPs with the diam-
eter as small as ca. 8 nm which present enhanced renewable 
NIR persistent luminescence in vivo. More importantly, such 
sub-10-nm PLNPs are readily functionalized and can be sta-
bly dispersed in aqueous solutions and cell culture medium 
for biological applications. Such nanocrystals possess supe-
rior red light renewable persistent luminescence both in vitro 
and in vivo, which can broad their use in photonics and bio-
photonics as advanced miniature “luminous pearls” [54]. 
Teston and co-workers designed a facile one-pot synthesis 
of ultra-small (6 nm) PLNPs by using a non-aqueous sol–gel 
method assisted with microwave irradiation (Fig. 1b). This 
strategy allows the control over the crystal growth by using 
the microwave heating as the energy source. The synthesized 
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Fig. 1  The morphology of the monodispersed and small-sized 
PLNPs. a Direct aqueous-phase synthesis of sub-10-nm PLNPs. 
Reproduced with permission from Ref. [54]. Copyright 2015 Ameri-
can Chemical Society. b Synthesis of ultra-small PLNPs using a non-
aqueous sol–gel method. Reproduced with permission from Ref. [50]. 
Copyright 2015 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim. 
c Silica shell-assisted synthetic route for synthesizing monodispersed 
PLNPs. Reproduced with permission from Ref. [67]. Copyright 2016 
Tsinghua University Press and Springer-Verlag Berlin Heidelberg. d 
Synthesis of sub-10-nm PLNPs using a bi-phasic route. Reproduced 
with permission from Ref. [65]. Copyright 2012 The Royal Society 
of Chemistry
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PLNPs were then easily surface-modified with polyethyl-
ene glycol phosphonate moieties [50]. Recently, Zou et al. 
have established a robust and controllable three-step strategy 
involving the coating/etching of the  SiO2 shell to synthesize 
monodispersed PLNPs (~ 15 nm) without any agglomeration 
(Fig. 1c). This advanced strategy provides an ideal route 
to fabricate novel optical materials with excellent size dis-
tribution, dispersity and biocompatibility [67]. Srivastava 
et al. synthesized a sub-10-nm Cr-doped  ZnGa2O4 nanopar-
ticles by a bi-phasic synthesis route through the hydrolysis 
of inorganic salts in a water–toluene system (Fig. 1d). This 
synthesis strategy can control the particle size and shape by 
the slow nucleation process [65]. All these aforementioned 
methods provide feasible ways to synthesize monodispersed 
PLNPs and can be extended to synthesize other functional 
metal oxide nanoparticles.

In a similar fashion, Li and co-workers report the syn-
thesis of 5-nm PLNPs with NIR emission at 800 nm via a 
direct aqueous-phase synthesis method [66]. This one-step 
hydrothermal synthetic route can easily produce PLNPs with 
abundant surface hydroxyl groups, avoiding complicated 

surface modification steps. Other synthesis routes using 
pulsed laser ablation, vacuum-annealing and surfactant-
aided hydrothermal steps, etc., can provide ultra-bright 
monodispersed PLNPs with the super-long NIR persistent 
luminescence for in vivo bioapplications [68, 69]. For exam-
ple, Wang et al. reported novel size-tunable hollow-struc-
tured PLNPs by crystallizing the immobilized parent ions 
on the carbon spheres and calcining. The large hollow cavity 
of PLNPs allows the high loading of chemical drugs and 
photosensitizers which can be used for chemo/photodynamic 
therapies (Fig. 2a) [70].

It is generally accepted that small size usually leads 
to short persistent luminescence and low quantum yield. 
To synthesize monodispersed small-sized PLNPs with 
bright and super-long afterglow remains challenging. 
Wang et  al. reported the zinc gallogermanate PLNPs 
 (Zn1+xGa2−2xGexO4:Cr, 0 ≤ x ≤ 0.5) with the composition-
dependent size distribution and persistent luminescence. 
The intensity and decay time of the persistent lumines-
cence can be fine-tuned by simply changing the formula 
[71]. Moreover, Wang and co-workers demonstrated 
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Fig. 2  a Synthesis and functionalization of the hollow NIR PLNPs. Reproduced with permission from Ref. [70]. Copyright 2018 American 
Chemical Society. b Regulating the traps, size and aqueous dispersibility of PLNPs by EDTA etching. Reproduced with permission from Ref. 
[72]. Copyright 2018 The Royal Society of Chemistry
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a simultaneous control of the traps, size and aqueous 
dispersibility via a simple ethylenediaminetetraacetate 
(EDTA) etching. The resulting PLNPs-EDTA showed 
the suitable mediate/deep traps, a fine aqueous dispers-
ibility and the super-long bright afterglows (Fig. 2b) [72]. 
The reported methods produced strong NIR-emitting and 
broadened the use of PLNPs in various research fields. 
Nonetheless, there are still many works needed to be done 
to deal with the tradeoff between the size and the persis-
tent luminescence performance.

2.4  Biomembrane Bioinspired PLNPs

In order to avoid the recognition and phagocytosis by the 
immune system, multifunctional surface modification of 
nanodrug delivery systems was developed, including hydro-
philic polymer modification, liposome encapsulation, tumor 
microenvironment responding strategies and so on. Li et al. 
reported the 4T1 tumor cell membrane-coated PLNPs-based 
nanocomposite for effective metastasis theranostic (Fig. 3a) 
[73]. This cancer cell membrane coating provided the 
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Fig. 3  a PLNPs nanocomposite was coated with 4T1 tumor cell membrane for PL imaging-guided chemo/photodynamic therapy of metastasis. 
Reproduced with permission from Ref. [73]. Copyright 2018 American Chemical Society. b PLNPs nanocomposite was coated with red blood 
cell membrane for in vivo long-circulating bioimaging and drug delivery. Reproduced with permission from Ref. [74]. Copyright 2018 Elsevier 
Ltd. c PLNPs nanocomposite was coated with Lactobacillus reuteri biofilm for colorectal cancer imaging and orally administrated chemother-
apy. Reproduced with permission from Ref. [75]. Copyright 2019 American Chemical Society
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nanocomposite with metastasis targeting ability and prevents 
the drug leakage. Due to the intrinsic biocompatibility and 
non-immunogenicity, red blood cell (RBC) membrane has 
also been successfully utilized to coat PLNPs-based nano-
composite as the biomimetic modifier (Fig. 3b) [74]. The 
RBC membrane-coated biomimetic nanocarriers showed 
a super-long persistent luminescence with the red-light 
renewability, a monodispersed nanosize and an excellent 
biocompatibility, which are suitable for in vivo long-circu-
lating bioimaging and concomitant drug delivery. Moreo-
ver, Lactobacillus reuteri biofilm (LRM) was coated on the 
PLNPs nanocomposite for orally administered PL bioimag-
ing and delivering colorectal cancer chemotherapeutic drug 
(Fig. 3c). This novel drug delivery system could protect the 
drugs from the gastric acid digestion and localize colorec-
tum, which may give new prospects for oral drugs delivery 
[75]. These biomembrane-modified PLNPs nanoplatforms 
offer promising potential for targeted cancer imaging and 
therapy.

3  PLNPs for Chemo/Biosensing

High target selectivity and sensitivity of chem/biosensing 
probes play an important role in chem/biomedical detec-
tions. For example, the detection of tumor biomarkers, 
metabolites, biomolecules and other fundamental signal 
parameters in living cells is essential for disease theranos-
tic and systematic studies on cell activities. Because of the 
elimination of the in situ excitation, PLNPs with long-lasting 
afterglow nature allow the chem/biosensing without back-
ground noise interferences. In particular, the NIR-emitting 
PLNPs showed the high penetration depth in biological tis-
sues, the good photo- and chemical stability and the low 
toxicity which make them exceptionally favorable in chem/
biosensing processes. PLNPs can be easily modified with 
various functional groups for the target detection and numer-
ous efforts were devoted for chem/biosensing based on these 
functional PLNPs (Table 1) [76]. Among these works, the 
FRET pathways play a crucial role in the detection process. 
The following paragraphs will focus on several detection 
applications utilizing PLNPs.

The sensitive and selective sensing of biomarkers in 
biological environments is crucial for an efficient clinical 
diagnosis. Compared with the conventional fluorescent sen-
sors based on dyes or QDs, PLNPs can provide noninvasive 

sensing both in vitro and in vivo and improve the detec-
tion limit by the elimination of the autofluorescence inter-
ferences. In 2011, Wu and co-workers established a FRET 
inhibition assay for α-fetoprotein (AFP) using water-soluble 
functionalized PLNPs  (Ca1.86Mg0.14ZnSi2O7:Dy3+,  Eu2+). 
The PLNPs were coated with polyethyleneimine and then 
conjugated with AFP antibody-coated gold nanoparticles. 
Au nanoparticles were served as the quencher due to their 
high molar adsorption coefficient. This highly sensitive and 
specific persistent photoluminescence probe can detect AFP 
in serum samples and real-time image the excreted AFP dur-
ing the cancer cell growth (Fig. 4a) [77].

Similarly, Li and co-workers reported two works about 
PLNPs-based detection of GSH and ascorbic acid via FRET. 
PLNPs were used as the luminescence unit and the CoOOH 
nanoflakes or the  MnO2 nanoparticles as the quencher. The 
luminescence of PLNPs can be restored in the presence 
of ascorbic acid, as the CoOOH quencher was reduced to 
 Co2+ [78]. For GSH detection, the presence of GSH reduced 
 MnO2 to  Mn2+ which restored the luminescence [79]. These 
approaches provide effective platforms for detecting and 
imaging reactive species in living cells and tissues.

The aforementioned strategies use the nanoparticles as the 
persistent luminescence quenchers for “off–on” FRET detec-
tion. In addition, fluorescent dyes can also serve as lumines-
cence quenchers or emit at different wavelength. Ju’s group 
established three kinds of PLNPs-based nanoplatforms 
assembled by covalently binding fluorescent dye (FITC)-
labeled peptides or DNA to carboxyl-modified PLNPs for 
the efficient detection of caspase-3 (Fig. 4b), microRNA 
and platelet-derived growth factor (PDGF) protein [80]. 
Wu et al. established a novel FRET immunoassay based on 
PLNPs for the prostate specific antigen (PSA) detection. 
The PLNPs conjugated with mouse monoclonal PSA anti-
body were employed as the energy donor, while Rhodamine 
B (RB)-bonded another PSA antibody was chosen as the 
energy accepter. PSA-mediated FRET from the modified 
PLNPs to RB resulted in the increase in the intensity ratio 
of RB (at 585 nm) to PLNPs (at 524 nm) with the increase 
in PSA concentration, which allow the efficient detection of 
PSA in serum and cell extracts (Fig. 4c) [81].

The impurities and other analytes in the complex samples 
may cause the high background noise and hamper the detec-
tion sensitivity and accuracy. For example, urine samples 
contain many kinds of small molecules, proteins and nucleic 
acids. Wang et al. published a PLNPs-based biochip with the 
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enhanced persistent luminescence signals and the ultra-low 
autofluorescence background interferences for bladder can-
cer-related miRNA-21 detection in urine (Fig. 5). Using the 
time-gated luminescence of PLNPs, the detection sensitivity 
was significantly improved and a detection limit of 26.3 fM 
was achieved [82]. This sensitive PLNPs-based detection of 
the disease-related biomarkers in patient urines can open up 
a new avenue in painless and noninvasive diagnosis.

The PLNPs-based nanoplatform was employed to detect 
other important parameters and biomolecules, such as 
dopamine, temperature, avidin and foodborne probiotics 

[83–86]. Furthermore, PLNPs-based detection can be pro-
duced as the assay reporters in the lateral flow assays [87]. 
The sensitive and selective detection without background 
interferences in complex biological samples is urgently 
needed for medical diagnosis, therapy monitoring and 
health management. For instance, the detection of heavy 
metal ions  (Hg2+,  Pb2+, etc.), reactive oxygen species 
(ROS) and high toxic molecules plays an important role 
in life sciences. Although biosensing based on PLNPs has 
been reported in many publications, more efforts need to 
be done before the clinical use.

Table 1  Chem/biosensing based on functional PLNPs

Composition of PLNPs Surface functionali-
zation

Conjugation Target Detection mode Limit of detection Refs.

Ca1.86Mg0.14ZnSi2O7:Dy3+, 
 Eu2+

PEI Ab-AuNPs α-Fetoprotein (AFP) Off–on 0.41 μg  L−1 [77]

Sr2MgSi2O7:Eu3+,  Dy3+ Hydroxylated CoOOH nanoflakes Ascorbic acid Off–on 2.20 μM [78]
Sr2MgSi2O7:Eu3+,  Dy3+ Hydroxylated MnO2 nanosheets Glutathione Off–on 0.83 μM [79]
Sr1.6Mg0.3Zn1.1Si2O7:Eu2+, 

 Dy3+
FITC-labeled sub-

strate peptide
– Caspase-3 On–off 2.4 × 105 unit  mL−1 [80]

Sr1.6Mg0.3Zn1.1Si2O7:Eu2+, 
 Dy3+

FITC-labeled DNA – MicroRNA-21 Off–on 0.26 pM [80]

Sr1.6Mg0.3Zn1.1Si2O7:Eu2+, 
 Dy3+

FITC-labeled 
aptamer

– Platelet-derived 
growth factor 
(PDGF)

On–on 2.57 pM [80]

Ca1.86Mg0.14ZnSi2O7:Dy3+, 
 Eu2+

PSA antibody Rhodamine 
B-bonded PSA 
antibody

Prostate specific 
antigen (PSA)

On–on 0.09 μg  L−1 [81]

SrMgSi2O6:Eu3+,  Dy3+ – – Dopamine On–off 0.78 μM [83]
Zn2GeO4:Mn2+ Lysozyme-binding 

aptamer
Black-hole-

quencher-labeled 
DNA (BHQ-DNA)

Lysozyme Off–on 4.6 nM [166]

Zn2GeO4:Mn – Gold nanoparticles–
aptamer complex

Isocarbophos On–off 7.1 μg  L−1 [167]

Cr
3+

0.004
∶ZnGa

2
O

4
Au nanoparticles Cy5.5-KGPNQC-

SH
Fibroblast activa-

tion protein-alpha 
(FAPα)

Off–on 115 pM [168]

Zn1.25Ga1.5Ge0.25O4:0.5%Cr3+ LTA antibody – Foodborne probiot-
ics

On–on – [84]

ZnGa2O4:Cr3+ Insulin-binding 
aptamer

Au complex Insulin Off–on 2.06 pM [169]

ZnGa2O4:Cr3+ – – Hemoglobin On–off 0.13 nM [170]
Sr2Al14O25:Eu2+,  Dy3+ – – antibiotics On–off 5 nM [171]
Sr2Al14O25:Eu2+,  Dy3+ – – 2,4,6-Trinitrophenol On–off 10 nM [171]
Zn2GeO4:Mn Single-stranded 

DNAs
Black-hole-

quencher-labeled 
DNAs

Bladder cancer-
related miRNA

Off–on 26.3 fM [82]

ZnGa2O4:Cr3+ Polyethyleneimine Dithiothreitol-coated 
gold nanorods

Arsenic(III) Off–on 55 nM [172]



Nano-Micro Lett.           (2020) 12:70  Page 9 of 26    70 

1 3

4  PLNPs for Bioimaging

PLNPs were first used by Scherman and co-workers for 
in vivo imaging [88]. PLNPs without the continuous in situ 
excitation can efficiently eliminate the background auto-
fluorescence from animal tissues in bioimaging, leading to 
the significant improvement of the imaging sensitivity and 

the signal-to-noise ratio (SNR). With the large surface-to-
volume ratio, surface modifications can be easily achieved 
by silica coating, polymer linking, biomolecules conjugation 
and so forth, after which PLNPs are ready to be employed 
into extensive bioimaging applications. Compared to con-
ventional in vivo optical imaging probes, PLNPs possess 
high photostability, superior SNR and excellent biocompat-
ibility and can be directly used in the commercially avail-
able imaging systems. Importantly, the long afterglow and 
red-light renewable capability permit PLNPs to be used for 
long-term in vivo bioimaging applications [44, 89, 90].

4.1  Cellular Imaging and Tracking

PL imaging allows noninvasive tracking and imaging for 
visualizing various biological processes of migrating cells, 
which might be crucial for the biological fate and progres-
sion of some diseases. Up to now, imaging of Raw 264.7 
macrophages (a phagocytic cell line), stem cells, breast can-
cer cells, J774A.1 macrophages have been widely studied by 
labeling with PLNPs [91–95]. Maldiney et al. and Chuang 
et al. reported the noninvasive long-term in vivo tracking 
of RAW 264.7 cells with PLNPs. The RAW cells can be 
efficiently labeled with PLNPs by simple incubation. As 
the NIR-emitting light has the better penetration, PLNPs 
labeling can track RAW cells during cell homing process 
in vivo [3].
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Fig. 4  Schematic illustration of PLNPs-based biosensing. a FRET 
inhibition assay for AFP based on the PL quenching of PEI-PLNPs 
by antibody (Ab)-AuNPs. Reproduced with permission from Ref. 
[77]. Copyright 2010 American Chemical Society. b Detection 
strategies of caspase-3 protease by using caspase-specific peptide-
functionalized PLNPs probe. Reproduced with permission from Ref. 
[80]. Copyright 2015 Elsevier Ltd. c Design for PSA detection using 
PLNPs-based FRET immunoassay. Reproduced with permission from 
Ref. [81]. Copyright 2015 The Royal Society of Chemistry
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Fig. 5  Time-gated detection of bladder cancer-related miRNA-21 by the developed PLNPs-based biochip. Reproduced with permission from 
Ref. [82]. Copyright 2019 American Chemical Society
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We established the first fabrication of TAT penetrating 
peptide-functionalized PLNPs for the long-term tracking 
of adipose-derived stem cells (ASC). We used the skin-
regeneration and tumor-homing models to study the in vivo 
tracking and imaging efficiency. PLNPs showed very prom-
ising results for ASC tracking without affecting the natural 
behavior of ASC, which provides us insights to study the fate 
and migration of ASC [35]. Early detection of cancer metas-
tasis is quite essential and challenging for the cancer diag-
nosis and treatment. The outstanding advantages of PLNPs 
in cell imaging show great potential for tracking cancer cell 
metastasis. Liu et al. reported the PLNPs-based real-time 
tracking of the orthotopic breast cancer cell metastasis, and 
its guidance for surgical resection (Fig. 6) [96]. Zhao et al. 
prepared PLNPs containing a hydrogel (PL-gel) for targeted, 
sustained and autofluorescence-free tumor metastasis imag-
ing (MBA-MD-231 breast cancer cells). This PL-gel could 
be rationally designed to target variety of other cancer cells 
and provide a powerful and versatile method for studying 
tumor metastasis [97].

PLNPs-based labeling strategies also have universal 
applications in monitoring other cancer cells. For example, 
Maldiney et al. reported the first use of biotinylated PLNPs 
to target the avidin-expressing glioma cells, which provided 
preliminary results for guiding the use of avidin–biotin tech-
nology to target the glioma tumor microenvironment [69]. 
Zhao et al. conjugated two targeting ligands (hyaluronic 
acid and folic acid) on the PLNPs, which target specifically 

toward the cluster determinant 44 receptor and the folic acid 
receptor on the tumor cells. This dual-targeting strategy 
provides synergistic effects to improve the specificity and 
affinity toward the cancer cells [98]. These cellular target 
imaging and tracking approaches not only inspire studies on 
the fate of cells in important life activities but also broaden 
the applications in cell-based research and therapy.

4.2  In Vivo Multimodal Imaging

To date, various imaging techniques have been developed 
for monitoring various biological processes and visual-
izing pathogenesis and progression of many diseases, 
such as the X-ray computed tomography imaging (CT), 
the magnetic resonance imaging (MRI) and the optical 
imaging. The PLNPs-based PL imaging (PLI) shows high 
SNR, easy operation and deep penetrating depth capabili-
ties. Thus, the integration of the PL imaging with other 
imaging techniques can bridge the gaps in resolution, sen-
sitivity and depth [43]. Several groups have introduced the 
engineering of multifunctional platforms based on PLNPs 
for the multimodal imaging (Table 2). The combination of 
PLI and MRI is most frequently studied [99–103]. These 
promising nanoprobes as novel diagnosis techniques will 
open wide applications for biologists and pharmacologists 
in biomedical research [104–106].

Lymph
node

LEDTumor

696 nm

696 nm

Nd3+

Cr3+

A-ZGCN

DSPE-PEG-COOH

ROS

1. Cell tracking

2. Radiotherapy

DNA
damage

Apoptosis

Fig. 6  In vivo tracking of breast cancer cells and inhibiting tumor metastasis by radiotherapy with engineered A-ZGCN nanoparticles. Repro-
duced with permission from Ref. [96]. Copyright 2019 American Chemical Society
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The in vivo multimodal imaging studies are mostly per-
formed on mice. Maldiney and co-workers introduced the 
first synthesis and functionalization of a multimodal PLI/
MRI nanoprobe based on the gadolinium-doped PLNPs. 
This novel imaging probe combines the high sensitiv-
ity from the PLI with the high spatial resolution of the 
MRI. The CT serves as a conventional medical imaging 
technique for a period of time, due to its promising fea-
tures in high spatial resolution and ease of illustrating 3D 
biological structures. Lu et al. reported the fabrication 
of  TaOx and PLNPs for a PL/CT bimodal imaging. This 
multifunctional nanoparticle could act as a new poten-
tial platform for the tumor imaging with high SNR, low 
toxicity and good spatial resolution [104]. Liu and co-
workers reported  GdAlO3:Mn4+,  Ge4+@Au (GAMG@
Au) core–shell nanoprobes for in vivo tri-modality (PLI/
MRI/CT) bioimaging (Fig. 7). The NIR persistent lumi-
nescence and the doped Gd element were used for the 
optical imaging and the magnetic resonance imaging, 
respectively. The gold nanoshell coated on the PLNPs 
could not only serve as the CT imaging agent but also 
enhance the PL efficiency via the plasmon resonance 
[106].

PLNPs-based optical bioimaging agents have been 
used in some subcutaneous-tumor bearing mouse models 
for tumor imaging or biodistribution study. In addition, 
PLNPs-based nanocomposites could be applied in other 
important biological models [107]. For example, in the 
lymphatic imaging, PLNPs could be potentially applied to 
monitor the location of lymph nodes and study the lymph 
node functions [108]. We believe that PLNPs are ideal for 
the long-term monitoring of the considerable biological 
processes in real time, including the imaging on bacteria, 
C. elegans or zebrafish models in the future.

4.3  X‑ray Irradiated PLNPs for In Vivo Imaging

Currently, the NIR-emitting PLNPs are mainly excited by 
UV, visible light or red LED light. The relatively short pene-
tration depth of these lights hindered the application for deep 
tissue imaging. In fact, PLNPs can also be excited by X-ray 
[109–112]. The development of soft X-ray excitation source 
with low power in recent years broadens the applications 
of PLNPs, as it can restore in vivo imaging signals even at 
20 mm depth. The NIR-emitting  ZnGa2O4:Cr PLNPs can be 
repeatedly activated with low-power X-ray. After the intrave-
nous injection or the oral administration, the in vivo whole-
body bioimaging was successfully achieved under X-ray 

Table 2  Typical multimodal in vivo imaging studies with PLNPs

Imaging modalities Composition of PLNPs Surface modification Biological model Refs.

PL/MRI Zn2.94Ga1.96Ge2O10:Cr3+,  Pr3+ Gd-DTPA Biodistribution [99]
PL/MRI Gd-doped ZGaO:Cr3+ PEG Biodistribution [43]
PL/MRI Gd2O3@mSiO2@CaTiO3:Pr3+ PEG Biodistribution [101]
PL/MRI ZGaO:Cr3+@  mSiO2-USPIOs Diglycolic anhydride Biodistribution [102]
PL/MRI Gd2O3-ZnGa2O4:Cr3+ Hyaluronic acid (HA) Tumor imaging [103]
PL/CT Zn2.94Ga1.96Ge2O10:Cr3+,  Pr3+@TaOx@SiO2 Cyclic-Asn-Gly-Arg peptides Tumor imaging [104]
PL/MRI/CT GdAlO3:Mn4+,  Ge4+@SiO2@Au – Tumor imaging [106]

1 min
(a)

(b)

(c)

10 min 30 min 60 min 5 h 8 h

Fig. 7  In vivo trimodal bioimaging. a PL images at different time 
points. b  T1-weighted MRI coronal images. c CT coronal view 
images. Reproduced with permission from Ref. [106]. Copyright 
2016 American Chemical Society
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irradiation (Fig. 8). Compared to the traditional UV and vis-
ible excitation sources, X-ray shows competitive advantages 
of deeper penetration depth and weaker scattering in tissues 
which activates PLNPs to emit NIR persistent luminescence 
for in vivo deeper tissue bioimaging [113–115].

4.4  In Vivo PL Imaging in the Second or Third 
Biological Window

It is well accepted that NIR emission can penetrate bio-
logical tissues, such as skin, blood and organs, more effi-
ciently than visible light. However, the light in the second 
(1000–1400 nm) and the third (1500–1800 nm) NIR bio-
logical windows shows the lower absorption, the lower 
scattering coefficient and the deeper tissue penetration 
than the light in the first NIR window (650–950 nm). Nie 
et al. reported new Ni-doped PLNPs with a tunable emis-
sion band peaking from 1270 to 1430 nm in the second NIR 
window (Fig. 9a). These long NIR emitting PLNPs with 

characteristic operational waveband and excellent tunability 
offer the possibility for visualizing structural and functional 
process in cells, tissues and other complex systems [40]. 
 Cr3+/Er3+-co-doped  LaAlO3 perovskite phosphors exhibit 
two long PL bands at 734 (first window) and 1553 (third 
window) nm (Fig. 9b). These NIR-emitting PLNPs lead to 
an improved contrast quality and deeper tissue penetration 
depth than the  Cr3+-doped PLNPs with the emission in the 
first NIR window [116–119].

5  PLNPs‑Based Imaging‑Guided Therapy

In recent years, PLNPs have been positively involved in 
theranostic studies, as the persistent luminescence can be 
used to determine the accurate position and time that therapy 
required, alleged “imaging-guided therapy.” Among vari-
ous therapeutic technologies, chemotherapy, photodynamic 
therapy (PDT) and photothermal therapy (PTT) are mostly 
studied due to their obvious treatment effects. With the 

(a)

(b)
In situ X-ray excitation and decayed bioimaging

Recharged by X-ray and renewable bioimaging

X-PLNPs Oral gavage

X-ray

Imaging

0 min 5 min 10 min 30 min 50 min
High

Low

Fig. 8  a In vivo bioimaging after the oral administration of PEG-modified PLNPs under X-ray irradiation. b Rechargeable in vivo whole-body 
imaging of mouse with oral administrated PLNPs at different time after stoppage of X-ray excitation. Reproduced with permission from Ref. 
[114]. Copyright 2017 The Royal Society of Chemistry
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remarkable penetration depth and biocompatibility, PLNPs 
can be integrated to provide various PL imaging-guided 
therapies [120].

5.1  PLNPs‑Based Drug Delivery and Chemotherapy

Chemotherapy is one of the most used cancer therapies, 
although its disadvantages of the drug resistance and the 
side effects or toxicity on healthy tissues limit the clinical 
effectiveness. Many nanoparticle-based drug delivery sys-
tems have been developed for simultaneous imaging and 
chemotherapy, which realizes the real-time monitoring of 
the treatment, the photo-controllable targeting and less side 
effects. Usually, mesoporous or hollow silica nanoparticles 
are integrated on the PLNPs as trackable drug carriers due to 
their large pore structure and specific surface areas [63, 121]. 
These platforms with high drug storage capacity and excel-
lent NIR persistent luminescence show promising potential 
for the delivery of any therapeutic agents as the trackable 
drug carriers.

Chen and co-workers established liposome-encapsulated 
PLNPs as novel PL imaging-guided drug carriers for chemo-
therapy. Since liposomes have been extensively used as drug 
carriers for biomedical applications with prominent merits 
of biocompatibility and biodegradability. The encapsulation 
of PLNPs in liposomes renders the high drug loading effi-
ciency, long-term NIR emission and remarkable therapeu-
tic capabilities [122]. Mesoporous silica (MS) was another 
frequently used drug carrier. Zhao et al. showed MS-coated 
PLNPs with pH-driven targeting and cathepsin B/glutathione 

dual-responsive drug release capabilities for PL imaging 
and chemotherapy of tumor [123]. Feng et al. developed a 
raspberry-like mesoporous  Zn1.07Ga2.34Si0.98O6.56:Cr0.01 (Si-
ZGO) nanocarriers for enhanced PL imaging and chemo-
therapy [124]. Metal–organic frameworks (MOFs) are 
advanced porous materials constructed by self-assembly of 
metal ions and multifunctional organic ligands, which have 
been widely used in separation, catalysis, molecular storage, 
biosensing/imaging and cancer therapy. The biocompatible 
porous framework ZIF-8 showed a significant drug load-
ing capacity, which has been used as acidic triggered drug 
release platform for the efficient cancer chemotherapy. Zhao 
et al. and Lv et al. constructed a PLNPs@ZIF-8 core–shell 
multifunctional nanoplatform using different assemble 
steps and then loaded with doxorubicin (DOX). The tumor 
site-specific drug release and the persistent luminescence 
imaging were successfully achieved (Fig. 10) [125, 126]. 
Apart from these strategies, more efforts need to be made 
to improve the targeting and therapeutic efficiency [127].

5.2  PLNPs‑Based Photodynamic Therapy

PDT is a treatment that uses photosensitizers along with 
light excitation to generate cytotoxic singlet oxygens (1O2) 
to kill cancer cells. Due to its low toxicity and minimal inva-
siveness to normal cells, it has become an alternative to the 
conventional therapeutic modality for variety of cancers. 
However, most photosensitizers for PDT need continuous 
activation by UV or visible light for a long time, leading 
to the limitation of the penetration depth in tissues and the 
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irradiation induced overheating and cell damages. PLNPs 
with long-lasting NIR emission can serve as a persistent 
light source for PDT activation without any need for contin-
uous photonic excitation [128–130]. This promising feature 
can minimize the deleterious side effects of PDT and pro-
vide convenient clinical cancer treatment without continuous 
external irradiation [131–133].

Abdurahman and co-workers reported the photosensi-
tizer (Si–Pc) covalently conjugated PLNPs with 808-nm 
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Fig. 10  a ZGGO@ZIF-8-DOX nanocomplex offered long-term NIR PL signals for the autofluorescence-free bioimaging and pH-responsive 
drug release for cancer chemotherapy. DOX release was accelerated in the acidic microenvironment of the tumor cells. Reproduced with permis-
sion from Ref. [125]. Copyright 2018 American Chemical Society. b PLNPs@ZIF-8 for acid-activated tumor imaging and drug release. Repro-
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NIR light renewable PL for PDT [131]. Except for cova-
lent binding, Wang et al. [132] prepared a mesoporous 
silica shell for the photosensitizer (sulfonated aluminum 
phthalocyanine, a traditional photosensitizer) loading. 
Fan and co-workers constructed injectable PL implants 
as a built-in excitation source for an efficient repeatable 
PDT. This study represents a fresh concept of PLNPs-
based PDT, leading to the efficient tumor growth sup-
pression [134].
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5.3  PLNPs‑Based Photothermal Therapy

In a typical PTT treatment, NIR light is converted into heat 
by proper agents (gold nanoparticles, CuS nanoparticles, 
graphene oxides, organic dyes, etc.), resulting in hyperther-
mia to kill cancer cells. Among the PTT agents, indocya-
nine green (ICG) is water-soluble and approved by FDA. To 
further improve the stability of ICG, several works about 
PLNPs functionalized with mesoporous silica shell have 
been developed to load ICG for the PL imaging-guided PTT 
[135–137]. Zheng and co-workers developed the PLNPs and 
ICG co-loaded mesoporous silica nanoparticles for PL imag-
ing and PTT (Fig. 11). This new PTT agent could be used 
for significantly killing the cancer cells [135]. Chen et al. 
designed an activatable multifunctional PLNPs/CuS-based 
nanoplatform for PL imaging-guided PTT in vivo. CuS nano-
particles served as both PTT agent and the quencher with a 
high photothermal conversion efficiency and a strong NIR 
absorption. The prepared nanoprobes showed highly sensitive 

tumor-targeted PL imaging and effective PTT, leading to 
great potential for clinical theranostic applications [105].

5.4  Other Imaging‑Guided Therapy

In some other cases, PLNPs were combined with other 
therapeutic agents for multiple applications. We first con-
jugated therapeutic plasmid on the polyetherimide (PEI)-
modified PLNPs. The fabricated dual functional PLNPs 
can track the engineered mesenchymal stem cells (MSCs) 
homing and the gene therapy of glioblastoma [138]. Qin 
et al. [139] designed a gold nanorods/siRNA-assembled 
PLNPs nanofibers for LED-amplified gene silencing in 
cancer cells. The controllable integration of PLNPs with 
new functional groups also shows great potential for other 
clinical theranostic applications. For example, design of 
a vaccine/PLNPs-based nanocomposite for effective PL 
imaging-guided immune therapy was never reported so 
far [140, 141].
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Fig. 11  Schematic representation shows the applications of ICG functionalized PLNPs for PL imaging-guided PTT in vivo. Reproduced with 
permission from Ref. [135]. Copyright 2016 American Chemical Society
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6  Biodistribution and Biosafety Evaluations 
of PLNPs

A growing insight toward in vivo applications has led to 
major improvements in the evaluation of the biodistribu-
tion and biosafety of PLNPs. The influences of the crystal 
size, the surface modification, the layer thickness and the 
charge on the biodistribution of PLNPs after intravenous 
injection have been evaluated in living animals [121, 
142, 143]. In general, the tissue distribution is found to 
be highly dependent on the surface coverage, as well as 
the core diameter. The PEG grafting is the most widely 
used surface modification method. It is found that increas-
ing PEG chain length or density on the surface of PLNPs 
can significantly slow down the uptake process by RES. 
The precise control of PEG density can prevent protein 
adsorption on the surface of PLNPs and significantly 
reduce macrophage uptake in vitro [144]. Such promising 
results offer broad prospects for long-term applications of 
PLNPs in vivo.

Toxicity assessment of PLNPs is quite necessary for 
bioapplications [145, 146]. The in vitro or in vivo evalu-
ation methods include the cytotoxicity study, the cell pro-
liferation and differentiation, the physical and behavio-
ral signs, the histological or hematological analysis, the 
hemolysis and blood biochemistry analysis and so on. The 
most convenient approach for evaluation of the cytotoxic-
ity of PLNP is the cell viability test after PLNPs incuba-
tion. The impact of PLNPs on the cellular proliferative and 
differentiative ability is another important indicator of the 
cytotoxicity. We investigated the influence of PLNPs on 
the differentiation of adipose-derived stem cells (ASC) and 
human mesenchymal stem cells (MSCs) by culturing with 
adipogenic, chondrogenic and osteogenic supplemented 
medium, respectively. The microscopic images showed no 
significant stain difference between PLNPs labeled and 
unlabeled stem cells in each kind of differentiation. Conse-
quently, these data suggest that PLNPs did not affect ASC 
and MSC differentiation [35, 138].

Physical and behavioral signs, such as the body weight, 
the excrement analysis, and behavior traits are employed 
to assess in vivo toxicity. The results generally indicate 
no significant changes as compared to the control groups 
[131]. In vivo toxicity of PLNPs is also evaluated via his-
tological studies of main organs, including heart, liver, 

spleen, lung, kidney and other organs harvested from 
PLNPs pre-injected mice. The microscopic images of 
slices stained with hematoxylin and eosin (H&E) showed 
that PLNPs hardly caused any lesions, tissue damage or 
inflammation to organs [3, 98]. Ramírez-García and co-
workers focused on several parameters, such as reactive 
oxygen species (ROS) indexes upon exposure to PLNPs, 
alterations in morphology at tissues and cellular levels 
and impact on blood cell counts [145, 146]. However, the 
currently obtained results of the biosafety evaluation of 
PLNPs are limited by relatively rudimentary and superfi-
cial methods. The possible immunotoxicity introduced by 
PLNPs needs further research in vivo. The relationship 
between the characteristics of PLNPs (composition, shape, 
size, surface modification, etc.) and toxicity needs to be 
systematically and profoundly established, especially for 
the long-term tracking studies.

7  New Organic and Polymeric PLNPs 
with Long Afterglow for In Vivo Optical 
Imaging

Nowadays, the number and type of PLNPs are still relatively 
limited. The main interest worldwide has focused on the 
rare earth heavy metal ions-doped inorganic materials. The 
high-cost, relatively complicated preparation and surface 
modification methods present the barriers for commerciali-
zation. Therefore, the development of new types of inexpen-
sive, long-term emitting, biocompatible, eco-friendly and 
heavy metal ions-free afterglow materials is highly desirable 
[147–149]. Yang et al. reported a new type of metal–organic 
frameworks (MOFs) with long-lasting afterglow which 
showed highly tunable afterglow phosphorescence colors 
upon pyridine solution treatment. This finding supplies a 
group of MOFs-based persistent luminescence nanophos-
phors with high performance [150–154]. Up to now, the 
afterglow MOFs have not been used in biomedical fields 
in vivo due to the relatively short emission wavelength and 
the undesirable diameter.

In recent years, afterglow organic ingredients and poly-
mers have captured special attention of chemist and bio-
medical scientists [155–157]. Semiconducting polymer 
nanoparticles (SPNs) assembled from completely benign 
organic components have emerged as versatile optical agents 
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for molecular imaging [158–160]. Miao et al. presented the 
SPNs that can store the photo energy via chemical defects 
and emit NIR long persistent luminescence at 780 nm. The 
afterglow intensity of the SPNs show more than 100-fold 
brighter than that of inorganic PLNPs. SPNs were used 
for the lymph node and tumor imaging with a significant 
high SNR. Moreover, the developed SPNs-based probe can 
detect the early drug-induced hepatotoxicity in living mice 
[42]. Recently, He et al. have developed an organic after-
glow protheranostic nanoassembly (APtN) with the after-
glow imaging and the drug release in response to tumor 
microenvironment (excessive  H2O2). Such molecular archi-
tecture combines passively tumor targeting, specific drug 
releasing and spontaneous afterglow generation, which pro-
vides design guidelines for activatable cancer theranostics 
(Fig. 12) [161–163].

The organic and polymeric PLNPs show high biocom-
patibility, good biodegradability and flexible synthesis and 
surface modification advantages for bioimaging and imag-
ing-guided therapy. So far, there is rare report on the pre-
cise in-depth imaging-guided cancer surgery. Ni et al. syn-
thesized a NIR PLNPs with aggregation-induced emission 

(AIE) characteristics. This AIE PLNPs showed innate prop-
erty of fast PL signal quenching in normal tissues and gave 
ultrahigh tumor-to-liver signal ratio. These fascinating fea-
tures make AIE PLNPs an excellent imaging-guided probe 
for peritoneal carcinomatosis resection (Fig. 13) [164]. 
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These new types of persistent luminescence nanophosphors 
with NIR emission, biocompatible and biodegradable nature 
have great promise as advanced molecular imaging tools, 
while the mechanism, synthesis methods, toxicity, imaging 
sensitivity and wide applications need further exploration 
and achievements.

8  Conclusion and Outlook

In this review, we provided a full-scale review of PLNPs 
from fundamental principles to all possible applications. The 
PLNPs possess a special advantage in eliminating autofluo-
rescence interferences without constant in situ excitation, 
which is ideal for long-term bioapplication. We discussed 
the main and recent developments in the diagnostic and ther-
apeutic applications of PLNPs, covering biosensing, multi-
modal imaging, drug delivery and imaging-guided therapy. 
In order to promote the biomedical applications of PLNPs, 
general and economic protocols for the synthesis and sur-
face modification have been developed, which are optimized 
for bioapplications with high biocompatibility, stability and 
low toxicity. PLNPs with different composition have been 
widely designed to enhance the PL intensity and the decay 
time to achieve better in vivo imaging performance in the 
past decade, while, as shown above, not all of the reported 
routes can simultaneously control the shape, size and homo-
geneity of nanoparticles as well as the long persistent lumi-
nescence duration at the same time. The involved methods 
just partly improve the properties of PLNPs. Although rapid 
progress has been made in synthesis process, there are still 
many fields that need additional work, including controlla-
ble synthesis of PLNPs with new wavelength emission and 
excitation bands, improving phosphorescence lifetime and 
afterglow intensity, exploring new activators, matrices and 
novel multifunctional application fields.

Several pioneering works on investigating the biosensing 
applications of PLNPs have been reported. The PL-based 
biosensing can reveal analysis of biomolecules with superior 
SNR and high sensitivity in complicated biological samples. 
It is highly desirable to develop PLNPs-based bioprobes 
for monitoring other important biomolecules in vivo, such 
as the levels of toxins and signal molecules in the living 
body. PLNPs with multiple combinations and modifications 

offer more possibilities for incorporation with other imag-
ing modalities (MRI, CT, PET, etc.). PL imaging-guided 
therapy can afford guiding cancer therapy with superior 
SNR. PLNPs can emit long persistent luminescence with-
out continuous in situ external excitation and can act as the 
internal light source for imaging-guided therapy, avoiding 
the overheating and tissue damage caused by conventional 
photo-assisted therapies with constant light excitation (UV 
light, 808 nm light, etc.).

The various approaches for biosafety assessment of 
PLNPs have also been briefly studied. PLNPs show great 
promise in bioapplications without obvious toxicity. For 
clinical applications, more efforts need to be devoted beyond 
nanoplatform construction, such as efficacy, price, clinical 
safety and degradation. Very recently, Lécuyer et al. have 
studied the degradation of PLNPs in biological media mim-
icking solutions. They provided valuable information for 
the possible elimination of PLNPs after in vivo preclinical 
applications [165]. The PL imaging-guided tracking of the 
disease processes should also be studied in the future. We 
hope that this review could comprehensively summarize the 
properties and bioapplications of PLNPs and will shed new 
light on future directions to develop novel PLNPs and dis-
cover novel benefits for multiple applications.
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