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S1 Calculation of Tafel Slope for OER 

The specific capacity was calculated by Eq. S1: 

                      η= a + b * log j                  (S1) 

Where η denotes the overpotential, b denotes the Tafel slope, j denotes the current 

density. The onset potentials were determined based on the beginning of the linear 

region in Tafel plots. 

S2 Calculation of Overpotential for OER 

η=ERHE – 1.23              (S2) 

S3 Calculation of Electrochemically Active Surface Areas for OER 

The double-layer capacitance (Cdl) of the samples can be determined from the cyclic 

voltammograms, which is expected to be linearly proportional to the effective surface 

area. CV measurements performed in the region of 0.1–0.3 V could be mostly 

considered as the double-layer capacitive behavior. The double-layer capacitance is 

estimated by plotting the ΔJ at 0.2 V against the scan rate, where the slope is twice of 
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Cdl (Fig. S7).  

S4 Calculation of Turnover Frequency (TOF) for OER 

TOF values were calculated by assuming that every metal atom is involved in the 

catalysis: 

              TOF = j × S /(4 × F × n)            (S3) 

where j (mA cm-2) is the measured current density at η = 400 mV, S is the surface area 

of the samples electrode, the number 4 means 4 electrons mol-1 of O2, F is Faraday’s 

constant (96,485.3 C mol-1), and n is the moles of coated metal atom on the electrode 

calculated from m. 

The mass activity (A g-1) values were calculated from the catalyst building m (mg cm-

2) and the measured current density j (mA cm-2) at η = 400 mV:  

               mass activity = j/m                 (S4) 

S5 Calculation of Electron Transferred Number (n) for ORR 

The number of electron transfer per O2 participate in oxygen reduction can be 

determined by Koutechy–Levich equation: 

                1/j = 1/jk + 1/Bω1/2                (S5) 

where jk is the kinetic current and ω is the electrode rotating rate. B is determined 

from the slope of the Koutechy–Levich (K–L) plots based on the Levich equation 

below: 

               B = 0.2nF(D𝑜2)2/3υ-1/6C𝑜2            (S6) 

where n represents the transferred electron number per oxygen molecule. F is Faraday 

constant (F = 96485 C mol-1). D𝑜2 is the diffusion coefficient of O2 in 0.1 M KOH 

(Do2 = 1.9 × 10-5 cm2 s-1). υ is the kinetic viscosity (υ = 0.01 cm2 s-1). C𝑜2 is the 

bulk concentration of O2 (C𝑜2 = 1.2 × 10-6 mol cm-3). The constant 0.2 is adopted 

when the rotation speed is expressed in rpm. 

For the Rotating Ring–Disk Electrodes measurements, the %𝐻𝑂2
− and transfer 

number (n) were determined by Eqs. S7 and S8: 

               %𝐻𝑂2
− = 200

𝐼𝑟/𝑁

𝐼𝑑 + 𝐼𝑟/𝑁  
             (S7) 
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                    n = 4
𝐼𝑑

𝐼𝑑 + 𝐼𝑟/𝑁
                (S8) 

where Id is disk current, Ir is ring current and N is current collection efficiency of the 

Pt ring. N was determined to be 0.40. 

S6 Calculation of Specific Capacity and Energy Density for Zn–air 

Batteries 

The specific capacity was calculated by Eq. S9:  

                        Specific Capacity = I × t/mZn           (S9) 

The energy density was calculated by Eq. S10:   

                   Energy Density = I × t × V/mZn              (S10) 

Where I denotes Current, t denotes the service hours, V denotes the average discharge 

voltage, and mZn denotes the weight of consumed zinc. 

S7 Supplementary Figures and Tables 

 

Fig. S1 TEM image for NiO nanosheets 
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Fig. S2 Original XRD results for NiO, Ni/NiO, and porous Ni/NiO catalysts 

 

Fig. S3 Pore width distribution curves for NiO, Ni/NiO, and porous Ni/NiO 

nanosheets 

 

Fig. S4 Fourier-transform of EXAFS 𝑘3𝑥 datas at the Ni K-edge and their 

corresponding oscillations for NiO, Ni/NiO, porous Ni/NiO nanosheets and Ni 

reference 
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Fig. S5 High-resolution XPS spectra of Ni 2p for NiO, Ni/NiO, and porous Ni/NiO 

nanosheets 

 

 

Fig. S6 The LSV polarization curve for Ir/C, NiO, Ni/NiO, and porous Ni/NiO 

nanosheets 
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Fig. S7 (a–c) CV curves for NiO, Ni/NiO and porous Ni/NiO catalysts measured at 

different scan rate, respectively. (d) The crossponding ECSA results for NiO, Ni/NiO 

and porous Ni/NiO catalysts 

 

Fig. S8 CV curves for porous Ni/NiO in O2 and N2-saturated 0.1 M KOH solution 
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Fig. S9 (a, b) The kinetic current, half-wave potential and onset potential for Pt/C, 

NiO, Ni/NiO, and porous Ni/NiO nanosheets 

 

Fig. S10 (a) ORR polarization curves for the Ni/NiO at different rotation speeds, and 

(b) the corresponding Koutecky–Levich plots at different potentials. (c) ORR 

polarization curves for the NiO at different rotation speeds, and (d) the corresponding 

Koutecky–Levich plots at different potentials 
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Fig. S11 (a) The i-t curves of OER for porous Ni/NiO catalyst and Ir/C (20%). (b) 

The i-t curves of ORR for porous Ni/NiO catalyst and and Pt/C (20%) 

 

Fig. S12 (a) XRD and (b, c) XPS results for porous Ni/NiO catalyst for initial and 

after catalysis 

 

Fig. S13 (a) TEM and (b) HRTEM images of porous Ni/NiO nanosheets for after 

OER process. (c)TEM and (d) HRTEM images of porous Ni/NiO nanosheets for after 

ORR process 
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Fig. S14 Open circuit voltage for porous Ni/NiO 

 

Fig. S15 Charge/discharge polarization curves for porous Ni/NiO 

 

Fig. S16 Long-term discharge–charge cycling performance at a current density of 2 

mA cm-2 for Ni/NiO 
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Fig. S17 (a) Discharge curve for porous Ni/NiO-based Zn–air battery at 20 mA cm-2 

and (b) the corresponding specific capacity for porous Ni/NiO-based Zn–air battery at 

20 mA cm-2 

 

Fig. S18 (a–c) Photograph of a red, green and blue LEDs powered by the unpacked 

two Zn–air batteries with the porous Ni/NiO air-cathode connected in series, 

respectively. (d) Photograph for unpacked Zn–air battery with the porous Ni/NiO air-

cathode displays a measured open circuit voltage of ≈1.464 V 
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Fig. S19 (a) The schematic diagram for solid-like Zn–air battery. (b–d) Photograph of 

a blue LED powered by the unpacked two solid-like Zn–air batteries with the porous 

Ni/NiO air-cathodes connected in series with different angles 

Table S1 Position of O 1s component for NiO, Ni/NiO, and Porous Ni/NiO 

Sample Peak B.E. (eV)     Area FWHM (eV)  

NiO  

 

 

O-Ni 529.13 15013.62 1.23 65.7% 

O defect 

adsorption O 

530.97 

532.59 

5228.91 

2591.72 

1.08 

1.20 

22.9% 

11.4% 

Ni/NiO  O-Ni 529.15 16855.31 0.94 62.3% 

O defect 

adsorption O 

530.96 

532.61 

7335.97 

2876.32 

1.12 

1.16 

27.1% 

10.6% 

Porous Ni/NiO O-Ni 

O defect 

adsorption O 

529.14 

530.96 

532.64 

9378.14 

9656.06 

7671.54 

1.02 

1.08 

1.12 

35.1% 

36.1% 

28.8% 
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Table S2 The E (E = Ej = 10 – E1/2) value of our work and others NiO-based or Ni-

based bifunctional catalysts 

Catalysts Ej = 10 (V) 

(10 mA cm-2) 

E1/2 (V) E (V) 

(Ej = 10 – E1/2) 

Refs. 

NiO 1.69 0.72 0.97 This work 

Ni/NiO 

porous-Ni/NiO 

NiCo2O4/C 

20% Ru/C 

Ni0.6Co2.4O6 

20% Ir/C 

Pt/C 

NiO/CoN 

1D-NiCo2O4 

NiCo2S4 

NiCoFe-LDH+GO 

1.53 

1.49 

1.67 

1.62 

1.76 

1.61 

1.86 

1.53 

1.62 

1.60 

1.47 

0.74 

0.75 

0.54 

0.61 

0.76 

0.69 

0.82 

0.68 

0.78 

0.80 

0.78 

0.79 

0.74 

1.13 

1.01 

1.00 

0.92 

1.04 

0.85 

0.84 

0.80 

0.69 

This work 

This work 

[S1] 

[S2] 

[S3] 

[S2] 

[S4] 

[S5] 

[S6] 

[S7] 

[S8] 

Table S3 Comparison of the performances of Zn–air batteries of our work and other 

recently reported catalysts 

Catalysts Electrolyte Open-circuit 

potential (V)  

Power 

density 

(mW cm-2) 

Refs. 

Pt/C 

NiO 

6.0 M KOH  

6.0 M KOH  

1.48 

1.38 

185 

90 

This work 

This work 

Ni/NiO 

Mesoporous-Ni/NiO 

Co-Nx/C NRA 

Meso/Micro-FeCo-Nx-

CN  

C-MOF-C2-900 

NiO/CoN PINWs 

Co/Co3O4@PGS 

Fe2N@NC 

S-treated Fe/N/C 

S-C2NA 

Pb2Ru2O6.5 

Co-Nx-C 

SN-PC-a 

CoSx@PCN/rGO 

6.0 M KOH  

6.0 M KOH  

6.0 M KOH 

6.0 M KOH 

6.0 M KOH 

6.0 M KOH 

6.0 M KOH + 0.2 M ZnAc 

6.0 M KOH 

6.0 M KOH + 0.2 M ZnAc 

6.0 M KOH + 0.2 M ZnAc 

6.0 M KOH 

6.0 M KOH + 0.2 M ZnAc 

6.0 M KOH 

6.0 M KOH + 0.2 M ZnAc 

1.43 

1.47 

1.42 

1.40 

1.46 

1.46 

1.45 

1.48 

~ 

1.49 

~ 

1.44 

1.33 

1.38 

178 

225 

193.2 

150 

105 

79.6 

118.27 

82.3 

250 

209 

195 

152 

17.4 

~ 

This work 

This work 

[S9] 

[S10] 

[S11] 

[S5] 

[S12] 

[S13] 

[S14] 

[S15] 

[S16] 

[S17] 

[S18] 

[S19] 
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