Supporting Information for

A High Capacity Ammonium Vanadate Cathode for Zinc-ion Battery

Qifei Li¹, Xianhong Rui^{1, 2, *}, Dong Chen¹, Yuezhan Feng³, Ni Xiao⁴, Liyong Gan⁵, Qi Zhang¹, Yan Yu^{2, 6, 7, *}, Shaoming Huang^{1, *}

¹Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China

²Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, People's Republic of China

³Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, People's Republic of China

⁴Aviation Fuel Research & Development Center, China National Aviation Fuel Group Limited, Beijing 102603, People's Republic of China

⁵Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, People's Republic of China

⁶Dalian National Laboratory for Clean Energy (DNL), Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China

⁷State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China

*Corresponding authors. E-mail: xhrui@gdut.edu.cn (X.H. Rui); yanyumse@ustc.edu.cn (Y. Yu); smhuang@gdut.edu.cn (S.M. Huang)

Supplementary Figures and Table

Fig. S1 Schematics of possible diffusion pathways for Zinc ion diffusion in monoclinic $NH_4V_4O_{10}$ viewed along the [100] (black arrows), [010] (blue arrow) and [001] (red arrow) direction. Orange and black balls indicate NH_4^+ ions and the most energetically

favorable location for Zn^{2+} intercalation, respectively. The VO layers are represented by red polyhedrons.

Fig. S2 The full XPS spectrum (a), and high-resolution XPS spectra of O (b) and N (c) species.

Fig. S3 TEM images of the 3D-NVO sample at different magnifications

Fig. S4 (a-c) SEM and (d) TEM images of the sample prepared by conventional autoclave hydrothermal method at reaction time of 2 h (a), 6 h (b) and 12 h (c and d). Inset in (d) is the corresponding XRD pattern obtained at 12 h, which can be assigned to a pure monoclinic structure of $NH_4V_4O_{10}$ (JCPDS Card No. 31-0075).

Fig. S5 Schematic illustration of the difference between microwave and conventional heating. In conventional heating system, there is a temperature gradient from the outside to the inner core.

Fig. S6 Galvanostatic discharge and charge profiles of the 3D-NVO cathode at different current densities

Fig. S7 Galvanostatic discharge and charge profiles of the 3D-NVO cathode during different cycles at 10 Ag^{-1}

Fig. S8 Cycling performance of the NVO nanobelts obtained from the traditional hydrothermal method at 10 A g^{-1}

Fig. S9 Plots of log(i) vs. log(v) based on anodic and cathodic peaks in Fig. 3f

Fig. S10 The XRD pattern of the 3D-NVO cathode after 100 cycles at 10 A g^{-1}

Cathode materials	Reversible capacity	Rate	Number of	Capacity
	[mAh g ⁻¹]	[mA g ⁻¹]	cycles	retention
This work	107	100	50	000/
(3D-NH ₄ V ₄ O ₁₀)	480	100	20	98%0
α-MnO ₂ [S1]	233	83	50	63%
δ-MnO ₂ [S2]	225	83	100	50%
Mn ₃ O ₄ [S3]	195	200	70	67%
ZnMn ₂ O ₄ [S4]	106	100	300	59%
VO ₂ [S5]	357	100	50	99%
VS ₂ [S6]	138	200	200	80%
V ₂ O ₅ [S7]	215	100	160	95%
V ₂ O ₅ ·nH ₂ O [S8]	196	14.4	120	87%
H ₂ V ₃ O ₈ @Graphene [S9]	360	300	150	93%
LiV ₃ O ₈ [S10]	185	133	65	78%
Na _{0.33} V ₂ O ₅ [S11]	276	200	100	91%
$Zn_2V_2O_7$ [S12]	210	300	200	94%
Zn ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O [S13]	149	200	300	68%
Na ₂ V ₆ O ₁₆ ·1.63H ₂ O [S14]	296	100	100	78%
Na _{1.1} V ₃ O _{7.9} @rGO [S15]	200	50	30	87%
V _{1-x} Al _x O _{1.52} (OH) _{0.77} [S16]	156	15	50	68%
Na ₃ V ₂ (PO ₄) ₃ @C [S17]	97	50	100	74%

Table S1 A comparison of the reversible capacity of our 3D-NH4V4O10 cathode topreviously reported superior ZIB cathodes

Supplementary References

- [S1] M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable alpha-MnO₂ nanorod electrode. J. Power Sources 288, 320-327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
- [S2] M.H. Alfaruqi, J. Gim, S. Kim, J. Song, P. Duong Tung et al., A layered delta-MnO₂ nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121-125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
- [S3] J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn₃O₄ in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170-178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- [S4] X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable

aqueous zinc-ion batteries using hollow porous spinel ZnMn₂O₄ as the cathode material. J. Mater. Chem. A **5**, 17990-17997 (2017). https://doi.org/10.1039/C7TA00100B

- [S5] J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Ultrafast Zn²⁺ intercalation and deintercalation in vanadium dioxide. Adv. Mater. **30**, 1800762 (2018). https://doi.org/10.1002/adma.201800762
- [S6] P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS₂ nanosheet-based aqueous zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- [S7] P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V₂O₅ aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9, 42717-42722 (2017). https://doi.org/10.1021/acsami.7b13110
- [S8] P. Senguttuvan, S.D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V₂O₅ battery. Adv. Energy Mater. 6, 1600826 (2016). https://doi.org/10.1002/aenm.201600826
- [S9] Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H₂V₃O₈ nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8, 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- [S10] M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684-1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
- [S11] P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- [S12] B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo et al., Aqueous rechargeable zn-ion batteries: an imperishable and high-energy Zn₂V₂O₇ nanowire cathode through intercalation regulation. J. Mater. Chem. A 6, 3850-3856 (2018). https://doi.org/10.1039/C7TA11237H
- [S13] C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. **30**, 1705580 (2018). https://doi.org/10.1002/adma.201705580

- [S14] P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, Highly durable Na₂V₆O₁₆·1.63H₂O nanowire cathode for aqueous zinc-ion battery. Nano Letters 18, 1758-1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- [S15] Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Pilotaxitic Na_{1.1}V₃O_{7.9} nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. **13**, 168-174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
- [S16] J.H. Jo, Y.K. Sun, S.T. Myung, Hollandite-type Al-doped VO_{1.52}(OH)_{0.77} as a zinc ion insertion host material. J. Mater. Chem. A 5, 8367-8375 (2017). https://doi.org/10.1039/C7TA01765K
- [S17] G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na₃V₂(PO4)₃. Nano Energy 25, 211-217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051