Supporting Information for

Transition Metal Aluminum Boride as a New Candidate for Ambient-

Condition Electrochemical Ammonia Synthesis

Yang Fu^{1, †}, Peter Richardson^{2, †}, Kangkang Li³, Hai Yu³, Bing Yu⁴, Scott Donne¹, Erich Kisi², Tianyi Ma^{1, *}

¹Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

²School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia

³CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia

⁴School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China

[†] Yang Fu and Peter Richardson contributed eqully to this work

*Corresponding author. E-mail: <u>Tianyi.Ma@newcastle.edu.au (</u>Tianyi Ma)

S1 Material Characterization

Scanning electron microscopy (SEM) images were obtained on a Zeiss Sigma VP FESEM instrument operating at 3 kV after sputtering specimens with gold. Energy-dispersive X-ray spectroscopy (EDS) investigations were conducted using a Bruker EDS detector to gather information regarding weight% of elements present, their uniformity and co-ordination. Transmission electron microscopy (TEM) was conducted on a JEOL JEM-2100 HRTEM instrument operating at 200 kV, equipped with a JEOL JED-2300 EDS detector. The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images were recorded using a FEI Titan G2 80-300 microscope at 300 kV equipped with a probe corrector. The crystallinity and phase purity of obtained samples were characterized by X-ray diffraction (XRD) patterns, recorded on a Panalytical X'PertTM diffractometer with Cu-Kα radiation. X-ray photoelectron spectroscopy (XPS) measurements were performed using a Thermo SCIENTIFIC K-Alpha+ X-ray photoelectron spectrometer. All electrochemical measurements were carried out on a CHI760e electrochemical station. Detection of ammonia was recorded using a spectrophotometer (UV-1800, SHIMADZU).

S2 Calculations

1) Ammonia yields were calculated using Eq. S1:

$$R_{NH_3}(\mu g \cdot cm^{-2} \cdot h^{-1}) = \frac{c \ (ppb) \times V(L)}{t(h) \times S(cm^{-2})} \qquad (S1)$$

Where:

 $R_{\rm NH_3}$ (µg · cm⁻² · h⁻¹): Ammonia formation yield

c (ppb): Ammonia concentration in the detection solution in ppb (μ g/L)

V(L): Volume of solution in litres

t (h): Reaction time in hours

S: Active area of the membrane electrode in cm^{-2}

2) Faraday efficiency of ammonia was determined using Eq. S2:

$$FE(\%) = \frac{3 \times c \, (ppb) \times 10^{-6} \times V \, (L) \times F}{17 \times Q \, (C)} \times 100 \,\% \tag{S2}$$

Where:

F: Faraday constant in C/mol;

Q: Total quantity of electric charge in C.

S3 Detection of Ammonia

Low ammonia concentration detection was carried out by spectrophotometry (indophenol blue method) and/or ion selective electrode analysis (Orion[™] High-Performance Ammonia Electrode 9512HPBNWP) methods. In addition, only a single absorber was used in the experiments.

S3.1 Ammonia-selective Electrode Method

Apparatus: Ammonia ion selective electrode – Ionic Strength Adjuster (Thermo Scientific Orion high performance ammonia ion selective electrode Cat.No.9512HPBNWP); Electrometer.

Reagents: Ammonia-free water; Ammonia standard solution: 1000 ppm ammonium chloride as Nitrogen standard (NH⁴⁺); Low level Ammonia pH-adjusting Ionic Strength Adjuster (ISA).

Procedures:

- a) Preparation of ammonia standards: A series of standard solutions were prepared with the concentrations of 20, 200, and 2000 ppb (NH⁴⁺) in 0.1 M KOH (absorber).
- b) Electrometer calibration: the following steps were performed during the electrometer calibration:
 - i. The electrode was soaked in an ammonia electrode storage solution for at least 15 min.
 - ii. The meter measurement mode was operated in mV mode.
 - iii. 100 mL of each standard was measured into separate, clean beakers. 2 mL of Low level Ammonia pH-adjusting Ionic Strength Adjuster was added to each beaker prior to calibration, followed by waiting until the reading was stable for 2 min.

- iv. The mV and ppb values were used as the Y axis and X axis respectively, to prepare the standard curve.
- v. The electrode slope was checked for validity (slope should be between 54 and 60 in a temperature range of 20-25 °C).

c) 50 mL of sample was measured and 1 mL of Low level Ammonia pH-adjusting Ionic Strength Adjuster was added. When getting readings which were stable for at least 2 min, the measurement was recorded.

d) Calculation

Fig. S1 Calibration of NH₃ in 0.1M KOH from 20 ppb to 2000 ppb

Fig. S2 Photograph of ammonia-sensitive testing instrument

S3.2 Indophenol Blue Method

In addition, compared to the Ammonia-selective electrode method, a colorimetric method using

indophenol blue for NH₃ detection was also performed to confirm the reliability of the former method.

Apparatus: A spectrophotometer (UV-1800, SHIMADZU) was used at fixed wavelength (λ =630 nm).

Reagents: Phenol (BDH Laboratory Supplies), ammonium sulphate (BDH Chemical, Australia Pty. Ltd.), ethanol (Merck KGaA), sodium nitroferricyanide (III) dehydrate (Sigma-Aldrich, > 99 %), trisodium citrate dehydrate (Sigma-Aldrich), sodium hydroxide (Sigma-Aldrich), sodium hypochlorite solution (Sigma-Aldrich).

Procedures:

- a) Preparation of special reagents:
 - i. Phenol-alcohol reagent: Dissolve 10 g of phenol in 95% ethyl alcohol to a final volume of 100 ml.
 - ii. Sodium nitroprusside (nitroferricyanide): Dissolve 1 g in DI water to a final volume of 200 ml. Store in dark bottle for no more than 1 month.
 - iii. Alkaline complexing reagent: Dissolve 100 g of trisodium citrate and 5 g of sodium hydroxide in DI water to a final volume of 500 ml.
 - iv. Oxidizing solution: Add 100 ml alkaline complexing reagent to 25 ml sodium hypochlorite (as fresh as possible).
- b) Measurement:
 - i. Preparation of NH₄-N standards: A series of NH4-N standard solutions were prepared with the concentrations of 0, 50, 100, 200, 500, 750, and 1000 ppb (NH₄⁺) by dissolving in (NH₄)₂SO₄.
 - ii. 10 mL of standard or sample solution was taken. Then 400 μ L of phenol solution, 400 μ L of nitroferricyanide solution and 1 ml oxidizing reagent were added respectively to the standard or sample solution. Absorbance measurements of standards and unknown samples were performed at λ =630 nm using a spectrophotometer after mixing the solutions well for at least 1 h.
 - iii. Absorbance values of standards were used to generate a standard curve. The standard curve below was used to calculate the ammonia concentration in unknown solutions.

Fig. S3 Calibration curve for colorimetric NH₃ assay using the Indophenol blue method

Fig. S4 UV-vis curves of various NH₃ concentration based on Indophenol blue method, and the insert shows the chromogenic reaction of Indophenol blue indicator with NH₃

S3.3 Determination of Hydrazine Hydrate

In addition, due to existing by-products, the yield of hydrazine in the electrolyte was examined by the method of Watt and Chrisp [S1]. A color reagent was prepared by a mixture of para-(dimethylamino) benzaldehyde (5.99 g), HCl (concentrated, 30 mL) and ethanol (300 mL). A calibration curve was plotted as follows: First, preparing a series of standard solutions with the concentrations of 0, 50, 100, 200, and 500 ppb by pipetting suitable volumes of the hydrazine hydrate-nitrogen 0.1 M KOH solution. Then, the absorbance of the standard or sample solution was measured at λ =460 nm after mixing 5 mL of standard or sample solution with 5 mL of color reagent. Finally, the yields of hydrazine in unknown sample solutions were estimated from a standard curve.

Fig. S5 Calibration curve for the colorimetric N₂H₄·H₂O assay using the method of Watt and Chrisp

Fig. S6 UV-vis curves of various N_2H_4 concentrations, and the insert shows the chromogenic reaction of para-dimethylamino-benzaldehyde indicator with N_2H_4

Fig. S7 SEM images of MoAlB SCs

Fig. S8 EDS point analysis of the MoAlB SCs

Table S1	The amounts	of elements atom	and weight b	y EDS
----------	-------------	------------------	--------------	-------

Element	series	wt%	at%
Boron	K-series	7.258457928	25.9421762
Carbon	K-series	2.658793147	8.553291868
Oxygen	K-series	4.317931307	10.42797402
Aluminium	K-series	19.39037932	27.76818405
Silicon	K-series	0.592503425	0.815148274
Molybdenum	L-series	65.78193487	26.49322558
	Sum:	100	100

Fig. S9 a SEM image of bulk MoAlB powder; **b** TEM image of a bulk MoAlB particle, the insert shows the associated SAED pattern; **c-f** EDS elemental mapping results for the bulk MoAlB particle in **b**

Fig. S10 XRD patterns of bulk MoAlB, MoAlB SCs, MoB (1:1), MoB (1:0.9), MoB (1:0.95), and MoB (1: 1.05)

Fig. S11 XPS spectrum for MoAlB SCs

Fig. S12 LSV curves of pure Cu foam, MoAlB SCs, Al, B, Mo, MoB (1: 1.05), MoB (1: 1), MoB (1: 0.95), and MoB (1: 0.9) electrodes in an N₂-saturated aqueous solution of 0.1 M KOH

Fig. S13 Ammonia yields for the MoAlB SCs/Cu foam electrode in an N₂ and Ar-saturated aqueous solution of 0.1 M KOH

Fig. S14 Chronoamperometry results at the -0.05 V vs. RHE within 10 h test

Fig. S15 a SEM image of MoAlB SCs/Cu foam before NRR stability tests; **b** SEM image of MoAlB SCs/Cu foam after NRR stability tests; **c** EDS region analysis of the MoAlB SCs/Cu foam before NRR stability tests; **d** EDS region analysis of the MoAlB SCs/Cu foam before NRR stability tests; The insert shows the corresponding SEM image of EDS region scan

Fig. S16 The N₂-TPD of MoAlB SCs, Mo and MoB (1:1)

Fig. S17 LSV curves of MoAlB SCs and Fe_2AlB_2 electrode in an N₂-saturated aqueous solution of 0.1 M KOH

Table S2 A brief summary of the representative reports on electrochemical N ₂ reduction in
aqueous solutions at ambient conditions

Temperature	Catalyst	Electrolyte	Yield	FE (%)	Potential	Refs.
25 °C	Au nanorod	0.1 M KOH	1.648 μg∙h⁻ ¹⋅cm⁻²	4.02	-0.2 V vs. RHE	[S2]
25 °C	a-Au/CeO _x -RGO	0.1 M HCl	8.3 μ g·h ⁻¹ ·mg ⁻¹	10.1	-0.2 V vs. RHE	[S3]
R.T.	30 wt% Fe ₂ O ₃ CNT	0.50 M KOH	0.649 μg·h⁻ ¹·cm⁻²	0.164	-2.0 V vs Ag/AgCl	[S4]
R.T.	VN (Nanowires)/CC	0.1 M HCl	2.48×10^{-10} mol s ⁻¹ cm ⁻²	3.58	-0.3 V vs RHE	[S5]
25 °C	ZIF-derived disordered carbon	0.1 M KOH	9.22 mmol g ⁻¹ h ⁻¹	10.2	-0.3 V vs RHE	[S6]
25 °C	B-doped graphene	$0.05 \text{ M} \text{ H}_2\text{SO}_4$	9.8 $\mu g \text{ cm}^{-2} h^{-1}$	10.8	-0.5 V vs RHE	[S7]
R.T.	Single Mo atoms anchored on N-	0.1M KOH	34.0 mg h ⁻¹ mg _{cat} ⁻¹	14.6	-0.3 V vs. RHE	[S8]

	doped porous carbon					
R.T.	Boron nanosheet	0.1 M Na ₂ SO ₄	$13.22 \ \mu g \ h^{-1}$	4.04	-0.80 V vs, RHE	[S9]
R.T.	MoAlB SCs	0.1 M KOH	9.2 μg h ⁻¹ cm ⁻² mg _{cat.} ⁻¹	30.1	-0.05 V vs. RHE	This work

 Table S3 Amounts of element atoms and weight by EDS region scan before and after NRR stability tests

	Element	series	wt%	at%
D. í.	Boron	K-series	3.734440272	10.5929913
	Carbon	K-series	7.010116388	17.8980216
	Oxygen	K-series	13.39565904	25.67552637
	Fluorine	K-series	5.869979419	9.474984723
Before	Aluminium	K-series	16.37436737	18.61044523
	Copper	K-series	3.746501132	1.807992468
	Molybdenum	L-series	49.86893638	15.94003823
		Sum:	100	100
	Boron	K-series	5.654867256	13.46861
	Carbon	K-series	6.149088269	13.1825
	Oxygen	K-series	18.27592052	29.41318
	Fluorine	K-series	10.76570021	14.59122
After	Aluminium	K-series	16.71550044	15.95214
	Potassium	K-series	4.024072383	2.650173
	Copper	K-series	3.157483003	1.279438
	Molybdenum	L-series	35.25736793	9.462732
		Sum:	100	100

Supplementary References

- [S1] G.W. Watt, J.D. Chrisp, Spectrohotometric method for the determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952). https://doi.org/10.1021/ac60072a044
- [S2] D. Bao, Q. Zhang, F.L. Meng, H. X. Zhong, M.M. Shi et al., Electrochemical reduction of N₂ under ambient conditions for artificial N₂ fixation and renewable energy storage using N₂/NH₃ cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799
- [S3] S.J. Li, D. Bao, M.M. Shi, B.R. Wulan, J.M. Yan, Q. Jiang, Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N₂ reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017). https://doi.org/10.1002/adma.201700001
- [S4] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Room-temperature electrocatalytic synthesis of NH₃ from H₂O and N₂ in a gas–liquid–solid three-phase reactor. ACS Sustain. Chem. Eng. 5, 7393 (2017). https://doi.org/10.1021/acssuschemeng.7b01742

- [S5] X. Zhang, R. Kong, H. Du, L. Xia, F. Qu, Highly efficient electrochemical ammonia synthesis vianitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 54, 5323–5325 (2018). https://doi.org/10.1039/c8cc00459e
- [S6] S. Mukherjeea, D.A. Cullenb, S. Karakalosc, K. Liud, H. Zhanga et al., Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N₂ and H₂O in alkaline electrolytes. Nano Energy 48, 217 (2018). https://doi.org/10.1016/j.nanoen.2018.03.059
- [S7] X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Boron-doped graphene for electrocatalytic N₂ reduction. Joule 2, 1610 (2018). https://doi.org/10.1016/j.joule.2018.06.007
- [S8] L.L. Han, X.J. Liu, J.P. Chen, R. Q. Lin, H.X. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen Fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201811728
- [S9] X.X. Zhang, T.W. Wu, H.B. Wang, R.B. Zhao, H.Y. Chen et al., Boron Nanosheet: An elemental two-dimensional (2D), material for ambient electrocatalytic N₂-to-NH₃ fixation in neutral media. ACS Catal. 9, 4609–4615 (2019). https://doi.org/10.1021/acscatal.8b05134