Supporting Information for

An Ultra-microporous Carbon Material Boosting Integrated

Capacitance for Cellulose-based Supercapacitors

Chenfeng Ding^{1, 4}, Tianyi Liu¹, Xiaodong Yan², Lingbo Huang¹, Seungkon Ryu³, Jinle Lan¹, Yunhua Yu^{1, *}, Wei-Hong Zhong^{4, *}, Xiaoping Yang¹

¹State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China

³Institute of Carbon Tech., Jeonju University, Jeonju 55069, South Korea

⁴School of Mechanical and Material Engineering, Washington State University, Pullman 99163, USA

*Corresponding authors. Email: <u>katie_zhong@wsu.edu (</u>Wei-Hong Zhong); <u>yuyh@mail.buct.edu.cn (</u>Yunhua Yu)

Supplementary Figures and Tables

Fig. S1 a SEM image of loose BC nanofibers. b SEM image of dense BC nanofibers

Fig. S2 a, b SEM images of MPC-800 porous structure and magnified surface morphology

Fig. S3 a, b SEM images of BC-800 carbonized under 800 °C without activation

Fig. S4 (a) Raman spectra. (b) Relative structural composition derived from the fitted Raman spectra. (c) XRD patterns

Table S1 Characterization of pores and specific capacitance of MPC-800 and u-MPC

Sample	C (%)	O (%)	N (%)	S (%)
BC-800	87.4	11.2	1.4	-
MPC-800	86.1	13.2	0.7	-
u-MPC	77.8	15.8	5.2	1.2

Fig. S5 High-resolution spectra of XPS spectrum (a) sulfur and (b) nitrogen. EDS images (c) carbon, (d) sulfur, and (e) nitrogen

Table S2	Characterization	of pores	and specific	capacitance	of MP	C-800 a	and u-MPO	C
----------	------------------	----------	--------------	-------------	-------	---------	-----------	---

Sample	<i>S_{BET}</i> (m ² /g)	S _{mic} (m ² /g)	<i>S_{ext}</i> (m ² /g)	<i>V_t</i> (cm ³ /g)	V _{mic} (cm ³ /g)	D _{ave} (nm)
BC-800	676.65	565.19	111.46	0.44	0.23	2.58
MPC-800	1554.54	1311.35	243.20	0.65	0.52	2.36
u-MPC	1704.20	1470.45	233.74	0.81	0.62	2.19

Fig. S6 (**a**) Morphology of u-MPC and particle size distribution. (**b**) Sectional morphology of u-MPC carbon particle

Fig. S7 (a) Impedance curves of u-MPC and MPC-800 and (b) magnified parts

Fig. S8 Capacitive and diffusive contributions to the total stored charge of (**a**) MPC-800 and (**b**) u-MPC determined by Dunn's method

Fig. S9 (a) Galvanostatic charge/discharge curves of symmetric supercapacitor at various areal current density. (b) Specific capacitance of supercapacitor versus various current densities

Fig. S10 (a) Areal energy density versus areal power densities. (b) Volumetric energy density versus volumetric power densities

Fig. S11 Long-term cyclic stability of symmetric supercapacitor at 0.3 A g⁻¹

Fig. S12 Impedance curves of symmetric device before and after 10,000 cycles