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HIGHLIGHTS

• A facile and effective epitaxial‑like growth strategy is applied to fabricate the  NiSe2/Ni(OH)2 heterojunction composite.

• The assembled asymmetric supercapacitor based on the heterojunction composite surpasses most of the reported results. It is the first 
time that the powdered electrode materials can have such large capacity, high rate, and extreme long cycle life.

ABSTRACT Constructing heterojunction is a promising way to improve the charge 
transfer efficiency and can thus promote the electrochemical properties. Herein, a 
facile and effective epitaxial‑like growth strategy is applied to  NiSe2 nano‑octahe‑
dra to fabricate the  NiSe2‑(100)/Ni(OH)2‑(110) heterojunction. The heterojunction 
composite and Ni(OH)2 (performing high electrochemical activity) is ideal high‑rate 
battery‑type supercapacitor electrode. The  NiSe2/Ni(OH)2 electrode exhibits a high 
specific capacity of 909 C g−1 at 1 A g−1 and 597 C g−1 at 20 A g−1. The assembled 
asymmetric supercapacitor composed of the  NiSe2/Ni(OH)2 cathode and p‑phenylen‑
ediamine‑functional reduced graphene oxide anode achieves an ultrahigh specific 
capacity of 303 C g−1 at 1 A g−1 and a superior energy density of 76.1 Wh kg−1 at 
906 W kg−1, as well as an outstanding cycling stability of 82% retention for 8000 
cycles at 10 A g−1. To the best of our knowledge, this is the first example of  NiSe2/Ni(OH)2 heterojunction exhibiting such remarkable 
supercapacitor performance. This work not only provides a promising candidate for next‑generation energy storage device but also offers a 
possible universal strategy to fabricate metal selenides/metal hydroxides heterojunctions.
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1 Introduction

Due to the severe consumption of fossil energy and envi‑
ronmental issues, it is urgent to develop novel clean‑energy 
technologies, including solar, wind, and tide [1]. After 
harvesting, these energy usually cannot directly parallel to 
the grids due to their severe fluctuations, thus energy stor‑
age devices affording large charging/discharging currents 
and long cycle lives are urgently needed [2–5]. Scientists 
have paid much efforts to develop energy storage devices, 
such as lithium/sodium/potassium ion batteries, fuel cells, 
and electrochemical supercapacitors [6–10]. Among them, 
supercapacitors are attractive due to their high safety, long 
cycle lives, large power densities, and low cost [11–13]. 
However, their low energy densities, compared with other 
electrochemical energy technologies, limit their further 
applications [14–16]. Several methods have been utilized to 
improve the energy storage performance of supercapacitor, 
and fabricating asymmetric supercapacitor is believed to be 
an ideal solution [17–19]. An asymmetric supercapacitor 
is composed of an electric double‑layer capacitive (EDLC) 
electrode, enabling the fast energy delivery, and a pseudo‑
capacitive/battery‑type electrode, ensuring large energy stor‑
age [20–22]. Therefore, an asymmetric supercapacitor can 
inherit both the advantages of large power densities from 
EDLC and large energy densities from pseudo‑capacitive/
battery‑type electrode [23].

Ideal electrode material for high‑performance supercapac‑
itor should have the following features: (1) high capacity; (2) 
excellent rate capability; (3) long cycle lives [24]. Ni(OH)2 
is one of the most attractive materials due to its large theo‑
retical capacity, easy‑synthesis, and environmental friendly 
[25–27]. However, it still suffers from the low conductivity, 
which is harmful to the rate performance [28]. Furthermore, 
the large volume expansion during charging/discharging pro‑
cess leads to cycling issues [29–31]. One promising strategy 
to improve its supercapacitor performance is compositing 
Ni(OH)2 with other materials. Generally, the Ni(OH)2‑based 
composite materials should have the following features. 
First, a considerable electron conductivity is required to 
compensate the low conductivity of Ni(OH)2 for improving 
the rate capability [31]. Second, a high mechanical stability 
is necessary for the cycling performance [32]. Moreover, 
the electron transfer between different phases should be fast 
and efficient [33]. However, it is difficult to satisfy all the 

features. For instance, the most widely reported Ni(OH)2/
carbon composite materials have good conductivity and 
mechanical strength [34–36]. But the van de Waals interac‑
tion between Ni(OH)2 and carbon largely limits the electron 
transfer efficiency between them. Recently, the composite 
of Ni(OH)2 and Ni oxides/sulfides/phosphides was investi‑
gated as promising electrode materials, and the heterojunc‑
tion structures between Ni(OH)2 and Ni oxides/sulfides/
phosphides are an important reason contributing to their 
remarkable supercapacitance behaviors [37–39]. However, 
there are still two issues needed to be addressed. Ni oxides/
sulfides/phosphides do not perform good conductivity, much 
lower than carbon‑based materials. Furthermore, oxidation/
sulfofication/phosphorization treatments on porous Ni(OH)2 
are the commonly used methods, and the cycling issue is not 
addressed due to the relatively fragile porous Ni(OH)2 basis 
[37]. Therefore, it is urgent to find a proper material and 
a proper synthesis route to obtain desired Ni(OH)2‑based 
composite materials for supercapacitor applications.

NiSe2 is one semiconductor with the low resistivity below 
 10−3 Ω cm−1 [39]. Using proper synthesis routes,  NiSe2 sin‑
gle‑crystal nano‑octahedra can be easily obtained and are 
expected to perform good conductivity with high mechanical 
strength due to its single‑crystal feature. If porous Ni(OH)2 
can be properly composited to the  NiSe2 nano‑octahedra, 
an ideal electrode material can be obtained, although there 
is no research reporting such composite as far as we know. 
Herein, we report an novel epitaxial‑like growth strategy 
on the fabrication of  NiSe2/Ni(OH)2 composite materials 
with  NiSe2 nano‑octahedra as the precursor. Through the 
treatment process, Ni atoms at the surfaces of  NiSe2 nano‑
octahedra are released to the solution and coordinated to 
 OH− ions. And those  OH− ions simultaneously bond to the 
unreleased surface Ni atoms, then a close  NiSe2/Ni(OH)2 
heterojunction can be formed in an epitaxial‑like crystalli‑
zation route. Under proper reaction conditions, the obtained 
 NiSe2/Ni(OH)2 electrode material exhibits the following 
advantages: (1) the heterojunction can improve electron 
transfer by DFT calculations; (2) large specific surface areas 
and suitable microporous structure ensure the abundant elec‑
trochemical active sites which are easily accessed by the 
electrolyte and rapid ion migration within the electrode; (3) 
the highly crystallized  NiSe2 nano‑octahedra foundations 
provide high mechanical strength, thus the good cycling sta‑
bility was obtained. As a result, the  NiSe2/Ni(OH)2 electrode 
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material obtained under optimized conditions displays the 
outstanding electrochemical performances of high spe‑
cific capacity of 909 C g−1 and good cycling stability of 
85% capacity retention after 5000 cycles. The asymmetric 
supercapacitor composed of  NiSe2/Ni(OH)2 cathode and 
p‑phenylenediamine‑functional reduced graphene oxide 
(PPD‑rGO) anode exhibits ultrahigh specific capacity of 
303 C g−1 and remarkable energy density of 76.1 Wh kg−1 
at the power density of 906 W kg−1, as well as the excellent 
cycling stability of 82% capacity retention after 8000 cycles, 
demonstrating it a promising supercapacitor device.

2  Experiment Section

2.1  Materials Preparation

2.1.1  Preparation of  NiSe2 Precursor

All the chemical regents are directly used without any fur‑
ther purification. In a typical procedure, 0.5 mmol nickel 
nitrate and 3 mmol selenium powder were dissolved in 
10 mL deionized water and 10 mL hydrazine hydrate solu‑
tion, respectively, and mixed together. Then, the mixed 
solution was stirred for 30 min to obtain the clear solution. 
The solution was sealed in a 50 mL Teflon‑lined stainless 
container and maintained 140 °C for 24 h. After that, the 
precipitation was collected by filtration, washed by deion‑
ized water and ethanol for several times, and dried at 60 °C 
for 24 h. Finally, the  NiSe2 precursor was obtained.

2.1.2  Preparation of  NiSe2/Ni(OH)2

In our experiment, 0.1 g  NiSe2 precursor was dispersed into 
20 mL 0.1 M KOH to obtain the homogeneous solution. 
Then, 1 mL 30%  H2O2 was added into the solution. The 
mixture solution was sealed in a 50 mL Teflon‑lined stain‑
less container and maintained 170 °C for different times. 
The reaction product was collected by filtration, washed 
by deionized water and ethanol for several times, and dried 
at 60 °C for 24 h. For convenience, for products at dif‑
ferent reaction times, the  NiSe2/Ni(OH)2 composite was 
termed as  NiSe2/Ni(OH)2‑1h,  NiSe2/Ni(OH)2‑2h,  NiSe2/
Ni(OH)2‑3h, and  NiSe2/Ni(OH)2‑6h, respectively. For com‑
parison, 80 mg  NiSe2 precursor and 20 mg Ni(OH)2 (Acros, 

for analysis) were physically mixed to obtain the  NiSe2/
Ni(OH)2 and termed as  NiSe2/Ni(OH)2‑Grind.

2.1.3  Preparation of PPD‑rGO

The preparation of PPD‑rGO is based on the previous 
reported works [40]. 50 mg GO was dispersed in 50 mL 
deionized water to form a homogeneous solution. Then, 
54 mg p‑phenylenediamine was added into the solution 
and stirred for 30 min. The mixed solution was sealed into 
autoclave at 180 °C for 12 h. The obtained products were 
washed by deionized water for several times.

2.2  Materials Characterization

Powder X‑ray diffraction (XRD) was used to investigate 
the phase purity and crystallinity of prepared samples (Cu 
Kα = 0.15418 nm). X‑ray photoelectron spectroscopy (XPS) 
was employed to examine the surface chemical states. The 
morphology and microstructure were examined by scan‑
ning electron microscopy (SEM) and transmission electron 
microscopy (TEM). Thermogravimetric analysis (TGA) 
tests were performed on a Mettler Toledo TGA instrument 
under  O2 condition at a heating rate of 10 °C min−1. The 
 N2 adsorption/desorption curves and pore size distributions 
were collected from surface area analyzer ASAP‑2020.

2.3  DFT Calculations

DFT calculations were performed using CASTEP in Mate‑
rial Studio software package [41–43]. The Ni(OH)2 (110) 
plane was cleaved and placed on the  NiSe2 (100) plane. Six 
layers of Ni(OH)2 (110) planes and three layers of  NiSe2 
(100) planes were used, and a vacuum slab of 10 Å was 
added at each side to build the  NiSe2(100)/Ni(OH)2(110) 
heterojunction structure. The exchange–correlation func‑
tional of GGA + PBESOL is utilized for optimizing the 
constructed model and DOS calculations. The cutoff energy 
of 780 eV was used, and the norm conserving pseudopoten‑
tials were used for each type of atom. Due to the existence 
of Ni atoms, spin polarization was considered. FFT grid of 
48 × 48 × 48 and SCF tolerance of 1 × 10−5 eV/cell was used. 
This set is adequate for our calculations.
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2.4  Electrochemical Measurements

All the electrochemical performances were tested by CHI 
760e instrument. In our experiment, we used a Ni foam as 
current collector, platinum gage as counter electrode, 6 M 
KOH as electrolyte solution. For working electrode, 16 mg 
activated materials, 2 mg conductive carbon black, and 
40 μL 5% polytetrafluoroethylene (mass radio, 8:1:1) were 
mixed together to get a homogenous slurry. Then, 2.5 mg 
of the mixture was painted on the Ni foam. Electrochemical 
impedance spectroscopy (EIS) was tested by using a distur‑
bance voltage in a frequency range of 0.01–106 Hz. In our 
work, the button asymmetric supercapacitor was assembled 
through using 2.5 mg  NiSe2/Ni(OH)2‑2h of as the anode, 
4 mg PPD‑rGO as the cathode.

3  Results and Discussion

3.1  Mechanisms of Epitaxial‑like Growth of  NiSe2/
Ni(OH)2 on  NiSe2 Nano‑octahedra

The overall synthetic process of  NiSe2/Ni(OH)2 heterojunc‑
tion composite is shown in Fig. 1a. Initially, using nickel 
nitrate and selenium powder,  NiSe2 nano‑octahedra were 
successfully prepared through a simple and controllable 
hydrothermal synthesis route. Subsequently, under the oxi‑
dative and alkaline conditions,  NiSe2 nano‑octahedra were 
converted to  NiSe2/Ni(OH)2 composite. As shown in Fig. 1b, 
c,  NiSe2 precursor exhibits a distinct octahedral feature in 
a size of 100–200 nm, and no other impurities were found. 
Figure 1c shows the TEM image of  NiSe2 octahedra, which 
well‑matches the SEM image. The surface morphology and 
structure of  NiSe2 nano‑octahedra have distinctly changed 
after the oxidation–hydrolysis treatment as displayed in 
Figs. 1d, e and S1. It is clear that the outer of  NiSe2 nano‑
octahedra is modified and surrounded by thin nanoflakes. 
The selected electron diffraction patterns were further 
employed to verify the constituent (Fig. S1). The inner and 
outer of nano‑octahedra display the bright spots and rings 
feature, respectively, which illustrate that epitaxial‑like 
growth of polycrystalline Ni(OH)2 nanoflakes on the sur‑
faces of monocrystalline  NiSe2 nano‑octahedra.

For revealing the transformation of the  NiSe2/Ni(OH)2 
composites, we investigate the morphology changes of 
 NiSe2/Ni(OH)2 composites at different reaction time, and 

the results are shown in Fig. 1f1–f4. When the reaction time 
reaches 1 h, a small amount of nanoflakes appear on the 
surfaces of nano‑octahedra (Fig. 1f1). At 2 h, the corners of 
nano‑octahedra are corroded and a large amount of ultrathin 
Ni(OH)2 nanoflakes crystallize and spread on the surfaces 
(Fig. 1f2). However,  NiSe2/Ni(OH)2‑2h still presents the 
octahedral shape. The EDS mapping shown in Fig. 1g1–g4 
demonstrates that the inner octahedra of  NiSe2/Ni(OH)2‑2h 
are still  NiSe2, consistent with the selected electron diffrac‑
tion patterns, while the oxygen is well spread at the outer. 
When the reaction time reaches 3 h, it is clear that the octa‑
hedral block has been severely corroded and a quite num‑
ber of thick nanosheets are formed (Fig. 1f3). After 6 h of 
reaction time,  NiSe2 nano‑octahedra have been almost com‑
pletely destroyed, and a large amount of thick nanosheets 
constructed into the octahedral shape (Fig. 1f4).

The epitaxial‑like growth of the Ni(OH)2 nanoflakes at 
the surfaces of the  NiSe2 nano‑octahedras contributes to the 
heterojunction structure of  NiSe2/Ni(OH)2, as demonstrated 
in the HRTEM images (Fig. 2). The Ni(OH)2 and  NiSe2 
domains can be clearly observed. Figure 2a is the zoom‑in 
Ni(OH)2 domain, and the hexagonal spots in the FFT image 
(the inset at the up‑right corner) indicate that the Ni(OH)2 
domain is top‑view of the (001) plane (the inset as the bot‑
tom‑right corner). The zoom‑in  NiSe2 domain shown in Fig. 
S2 is the top‑view of the (001) plane due to the square spots, 
although slight distortion can be noticed. The measured lat‑
tice fringes at Ni(OH)2 and  NiSe2 domains are ascribed to 
the Ni(OH)2 (110) planes and the  NiSe2 (400) planes, and 
the distances are 1.57 and 1.49 Å, respectively (Fig. 2d, e). 
The epitaxial‑like crystallization of Ni(OH)2 on the  NiSe2 
requires the similar lattice constant between them. As 
shown in Fig. S1, the (110) plane of Ni(OH)2 is composed 
of the Ni–O octahedral layer with the distance between two 
Ni atoms equaling to 5.39 Å, nearly twice of the distance 
between two Ni atoms on the  NiSe2 (001) plane, it is likely 
that the epitaxial‑like growth of Ni(OH)2 on  NiSe2 contribut‑
ing to the  NiSe2‑(100)/Ni(OH)2‑(110) heterojunction.

The heterojunction can effectively facilitate the electron 
transportation at the interfaces. DFT calculation was there‑
fore performed to investigate the density of the electron state 
of the atoms at the  NiSe2‑(100)/Ni(OH)2‑(110) interface. 
The model build for the calculation is shown in Fig. 2c, and 
the partial density of states (PDOS) for each atom was cal‑
culated, as shown in Figs. 2f, g and S3. At the interface, 
the Ni atoms present typical conductive feature due to no 
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forbidden gap in their PDOSs, and furthermore, the PDOSs 
of Ni and O atoms in Ni(OH)2 layers all present no forbidden 
gap, indicating the good electron conductivity at the inter‑
face, as well as a few layers of Ni(OH)2 out of the interface. 
However, it is obvious that the forbidden gap tends to open 
in the PDOSs of Ni and O when Ni(OH)2 layers are away 
from the interface. In layer 5, Ni and O atoms exhibit similar 
PDOSs compared with Ni(OH)2. The PDOSs of Ni and Se 
atoms within the  NiSe2 layers close to the interface were also 
calculated, and they all present conductive feature with no 
forbidden gaps appear; as shown in Fig. S3, indicating the 

formation of  NiSe2/Ni(OH)2 heterojunction does not influ‑
ence the conductivity of  NiSe2. The DFT calculations well 
demonstrate the superiority of the  NiSe2/Ni(OH)2 hetero‑
junction for electron transport.

The XRD patterns of  NiSe2 and  NiSe2/Ni(OH)2 hetero‑
junction composites at different reaction time are presented 
in Fig. 3a. It is clear that all prepared samples exhibit strong 
 NiSe2 peaks, and Ni(OH)2 peaks gradually increase with 
reaction time. The characteristic diffraction peaks at 29.80°, 
33.41°, 36.70°, and 50.48° represent the (200), (210), (211), 
and (311) planes of  NiSe2, respectively. After treated in 

(a)

Hydrothermal
synthesis

Epitaxial-like
growth

120 °C, 12 h

(b)

(f1) (f2) (f3) (f4)

(g1) (g2) (g3) (g4)

(c) (d) (e)

100 nm

H2O2 KOH

NiSe2/Ni(OH)2 compositesNiSe2 nano-octahedra

Ni Ni

Ni
Ni

Ni

Ni
SeSe

Se
Se

SeSe

50 nm50 nm50 nm50 nm

400 nm100 nm500 nm

Ni Se O

Fig. 1  a Synthetic process of  NiSe2/Ni(OH)2 heterojunction composites. b, c SEM and TEM images of  NiSe2. d, e SEM and TEM images of 
 NiSe2/Ni(OH)2‑2h. f(1–4) TEM images of  NiSe2/Ni(OH)2‑1h,  NiSe2/Ni(OH)2‑2h,  NiSe2/Ni(OH)2‑3h,  NiSe2/Ni(OH)2‑6h. g(1–4) EDS mapping 
images of  NiSe2/Ni(OH)2‑2h
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hydrogen peroxide and potassium hydroxide aqueous solu‑
tion, the characteristic diffraction peaks of Ni(OH)2 appear. 
Interestingly, Ni(OH)2 peaks arose firstly at 2θ value of 
59.05°, associated with the (110) planes of Ni(OH)2. While 
the diffraction peaks at 19.26° and 38.54° belong to (001) 
and (101) planes, which are stronger than other peaks in the 
PDF standard card and for most reported Ni(OH)2 nanoma‑
terials, appear later than the (110) peak [44]. We suggest 
that the abnormally prior‑growth of (110) peak is associ‑
ated with the epitaxial‑like crystallization of Ni(OH)2 on 
the (110) plane.

XPS spectra were further collected to get insight into the 
surface chemical state changes during the treatments, as 
shown in Figs. 3b, c and S5. For the  NiSe2 precursor, the 
characteristic peaks of 853.52 and 870.94 eV are indexed 
to Ni  2p3/2 and Ni  2p1/2 due to the Ni–Se bond, and there 
is only negligible Ni–O peaks due to the trace  NiOx on the 

 NiSe2 surfaces [45]. After immersing into the KOH/H2O2 
aqueous solution for 2 h, a noticeable change in the sur‑
face chemical state can be observed as demonstrated in the 
 NiSe2/Ni(OH)2‑2h XPS spectrum. The characteristic peaks 
at 856.04 and 873.93 eV are assigned to Ni  2p3/2 and Ni 
 2p1/2 due to Ni–O bond, indicting the formation of external 
Ni(OH)2. Meanwhile, the Se 3d peak almost disappear in the 
 NiSe2/Ni(OH)2‑2h XPS spectrum while is strong in the  NiSe2 
spectrum (Fig. 3c), implying the outer  NiSe2 has converted 
to Ni(OH)2. It is worth mentioning that inner part of the 
 NiSe2 octahedra maintains since the XRD pattern of  NiSe2/
Ni(OH)2‑2h still presents strong  NiSe2 characteristic peaks.

Based on the XRD and XPS results, we suggest the two 
steps of epitaxial process from  NiSe2 to  NiSe2/Ni(OH)2 com‑
posites: initially,  Se− ion is oxidized by hydrogen peroxide, 
and  Ni2+ ions are released into solutions. Subsequently, unre‑
leased Ni atoms at the surfaces are coordinated to  OH− ions 
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forming into a thin layer Ni(OH)2 with (110) planes due to 
the restriction of  NiSe2 (100) planes. Meanwhile, the  Ni2+ 
and  OH− ions in solution also precipitate on the Ni(OH)2 
(110) plane, contributing to the epitaxial‑like route and the 
growth of (110) peak in the XRD pattern. Eventually, the 
 NiSe2/Ni(OH)2 composites with  NiSe2‑(100)/Ni(OH)2‑(110) 
heterojunction are achieved.

For better understanding the conversion process from 
 NiSe2 nano‑octahedra to  NiSe2/Ni(OH)2 heterojunction 
composites, we obtained the products from either pure 
hydrogen peroxide aqueous solution or pure potassium 
hydroxide aqueous solution. As illustrated in Fig. S4a,  NiSe2 
in neither pure  H2O2 solution nor pure KOH solution can be 
transformed to the desired  NiSe2/Ni(OH)2 compositions. In 
the absence of  H2O2,  NiSe2 retained the original phase with‑
out any change. Without KOH, the product is in multi‑phase, 
and no Ni(OH)2 peaks can be observed. Furthermore, we 
also immersed NiO into the KOH/H2O2 aqueous solution to 
demonstrate that the Ni(OH)2 is originated from  NiSe2 rather 
than the trace NiO on the  NiSe2 surfaces. As shown in Fig. 
S4b, NiO maintains unchanged during the treatments. There‑
fore, we can conclude that immersing  NiSe2 in the KOH/

H2O2 aqueous solution results in the epitaxial‑like growth 
of  NiSe2/Ni(OH)2 heterojunction composites.

Quantitatively analysis in the amounts of  NiSe2 and 
Ni(OH)2 within the  NiSe2/Ni(OH)2 is based on the EDX and 
TGA measurements. The EDX spectrum of  NiSe2/Ni(OH)2‑
2h is displayed in Fig. 3d. The atom ratio of Ni, O, Se is 
33.89%, 19.40%, 46.71%, respectively, and the molar ratio 
between  NiSe2 and Ni(OH)2 is 2.4:1. However, due to that 
the EDX only focuses on a small spot, and it is irrational to 
conclude that the molar ratio within the whole sample is the 
same. Therefore, TGA tests were further employed to quan‑
titatively investigate the compositional features of all  NiSe2/
Ni(OH)2 composites. As shown in Fig. S6 and Table S1, it 
is clearly that the mass fraction of Ni(OH)2 increased with 
the reaction time, and the molar ratio between  NiSe2 and 
Ni(OH)2 within  NiSe2/Ni(OH)2‑2h is 1.7:1, which is close 
than the value from EDX. At 6 h, most of the  NiSe2 has 
transformed to Ni(OH)2, and the molar ratio between  NiSe2 
and Ni(OH)2 is 0.387:1, associated with the TEM results 
shown in Fig. 1f4. The TGA results clearly demonstrate 
that the growth of Ni(OH)2 on  NiSe2 can be easy regulated 
depending on the treatment time.
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Figure 3e displays the  N2 adsorption/desorption curves 
of the prepared samples. Obviously,  NiSe2 nano‑octahedra 
show an extremely low  N2 adsorption capacity even at 1.0 
P/P0, implying its low specific surface associated with the 
well crystallized phase. However, after a controllable epi‑
taxial‑like growth, the obtained  NiSe2/Ni(OH)2 composites 
exhibit much higher  N2 adsorption, indicating their enlarged 
specific surface areas. The calculated specific surface areas 
based on the  N2 adsorption/desorption isotherms of  NiSe2, 
 NiSe2/Ni(OH)2‑1h,  NiSe2/Ni(OH)2‑2h,  NiSe2/Ni(OH)2‑3h 
and  NiSe2/Ni(OH)2‑6h are 4.29, 73.59, 88.17, 63.59, and 
36.29 m2 g−1, respectively. Interestingly,  NiSe2/Ni(OH)2‑2h 
performs the largest surface areas, implying an non‑propor‑
tional relation between reaction time and the porosity. The 
corresponding pore size distribution of prepared samples 
is displayed in Fig. 3f. Illustrated by the curves of  NiSe2, 
 NiSe2/Ni(OH)2‑1h, and  NiSe2/Ni(OH)2‑2h, the pore volume 
increases regularly in a range of 1–3 nm at the initial 2 h. 
When the reaction time is above 3 h, the pore volume in the 
size from 1 to 5 nm drastically reduces. Considering in that 
the molar ratio of  NiSe2 and Ni(OH)2 is 1.41:1 for 3 h and 
0.39:1 for 6 h, and it is highly likely that the further crystal‑
lization of Ni(OH)2 after 2 h blocks the smaller pores. There‑
fore, we suggest an optimized reaction time is necessary to 
achieve larger surface areas and proper pore structures for 
supercapacitor applications, and here,  NiSe2/Ni(OH)2‑2h is 
the most promising one compared with its counterparts.

3.2  Electrochemical Analysis

The unique structure of  NiSe2/Ni(OH)2 composites implies 
its potential as supercapacitor electrode material. Thus, for 
investigating the supercapacitance performances of  NiSe2/
Ni(OH)2 composites, a series of electrochemical characteri‑
zations including cyclic voltammetry (CV), galvanostatic 
discharge–charge (GCD), and electrochemical impedance 
spectroscopy (EIS) were employed, and the results are 
shown in Figs. 4 and S7. The CV curves of  NiSe2 and all 
 NiSe2/Ni(OH)2 composites are presented at a scan rate of 
5 mV s−1. We can observe a pair of strong redox peaks, 
especially,  NiSe2/Ni(OH)2‑2h exhibits the strongest redox 
peaks, and the good symmetry of its redox peaks indicates 
the high Coulomb efficiency. The related electrochemical 
reactions were as follow (Eqs. 1 and 2) [46]:

The specific capacities of all  NiSe2/Ni(OH)2 electrode 
materials were calculated based on the GCD curves, and 
the results are presented in Fig. 4c. Corresponding to the CV 
curves, all GCD curves presented symmetric potential plat‑
forms resulted from reversible redox reactions (Fig. 4b). As 
expected,  NiSe2/Ni(OH)2‑2h shows much longer charge–dis‑
charge time, demonstrating its larger capacity than its coun‑
terparts. The specific capacity of  NiSe2/Ni(OH)2‑2h reaches 
a high value of 909 C g−1 (1818 F g−1) at the current density 
of 1 A g−1. Furthermore, at the current density of 20 A g−1, 
the specific capacity of  NiSe2/Ni(OH)2‑2h is 597 C g−1 
(1194 F g−1), illustrating its good rate capability at large 
charge–discharge currents. Figure 4d shows the cycling tests 
of  NiSe2 and all  NiSe2/Ni(OH)2 composites at the current 
density of 5 A/g.  NiSe2,  NiSe2/Ni(OH)2‑1h,  NiSe2/Ni(OH)2‑
2h,  NiSe2/Ni(OH)2‑3h, and  NiSe2/Ni(OH)2‑6h present 
89%, 84%, 85%, 69%, and 61% present capacity retention 
after 5000 cycles, respectively. Interestingly,  NiSe2,  NiSe2/
Ni(OH)2‑1h, and  NiSe2/Ni(OH)2‑2h all present higher stabil‑
ity than other  NiSe2/Ni(OH)2 composites synthesized with 
longer reaction time. Based on the TEM results in Fig. 1, we 
suggest longer reaction time that destroys the  NiSe2 octahe‑
dra foundation, leading to the unstable structures. Thus, it is 
concluded that the excellent stability is attributed to the high 
mechanical strength of  NiSe2 nano‑octahedra. Furthermore, 
the electrochemical performance of  NiSe2/Ni(OH)2‑2h is 
competitive with other reported materials which is shown 
in Table S4, indicating tremendous potential as high‑per‑
formance electrode materials.

I–V characteristic curves were examined, and the results 
are shown in Fig. 4e. It is apparent that  NiSe2 nano‑octa‑
hedra and  NiSe2/Ni(OH)2‑2h exhibit preferable electron 
conductivity, much better than Ni(OH)2. Especially, it is 
noteworthy that the  NiSe2/Ni(OH)2‑grind, which is pre‑
pared by simply mixing and grinding  NiSe2 and Ni(OH)2 
(the weight ratio of Ni(OH)2 is 20%, same to the value in 
 NiSe2/Ni(OH)2‑2h) does not perform good conductivity. 
Therefore, it is concluded that the  NiSe2/Ni(OH)2 hetero‑
junction structure facilitate the electron transport, and the 
conductivity of  NiSe2 is well inherited in the  NiSe2/Ni(OH)2 
heterojunction composite.

(1)NiSe2 + OH
−
↔ NiSe2OH + e−

(2)Ni(OH)2 + OH
−
↔ NiOOH + H2O + e−
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Electrochemical impedance spectra were collected in a 
frequency range of 0.01–106 Hz and displayed in Fig. 4f. 
Obviously, the impedance spectra of all electrode materials 
perform similar curves, which composed of a semicircle in 
the high‑frequency region and a sloping straight line in the 
low‑frequency region. The impedance spectra of all elec‑
trodes were fitted using the equivalent circuit presented in 
the inset of Fig. 4f. Rs and Rct are the electrolyte resistance 
and faradic resistance. On account of the depressed semicir‑
cle regions, CPE (constant phase angle element) was chosen 
rather than capacitor. Wo (Warburg element) was adopted 
to investigate the diffusion of electrolyte within the elec‑
trode. As listed in Table S2, the CPE‑T values represent the 
EDLCs, and the CPE‑P closing to 1 suggests the small leak‑
age of current. It is apparent that  NiSe2/Ni(OH)2‑2h exhibit 
lower Rct of 0.222 Ω and Wo‑R of 0.601 Ω compared with 
its counterparts, illustrating the rapid electrolyte diffusion 
and fast faradic reaction.

For better understanding the charge–discharge behavior 
of electrode materials, the scan rates and oxide peak current 
were fitted using Eq. 3 [21]:

The fitting results are presented in Fig. S8 and Table S3. 
Obviously, b‑values of all the electrode materials are close to 
0.5, indicating the diffusion‑controlled behavior and battery‑
type charge–discharge process. It is worth mentioning that 
Eq. 3 is originated from Eq. 4 [21]:

In this formula, k1v and k2v0.5 are the capacitive contribu‑
tion (iEDLC) and diffusion contribution (idiff) of current. The 
capacitive process including physical adsorption/desorption 
of electrolyte ions and fast surface redox reactions (capaci‑
tive contributions), and the diffusion process is kinetic slug‑
gish redox reactions controlled by the diffusion of electrolyte 
ion (diffusion‑controlled contributions). This method is suit‑
able for batteries due to the narrow range of sweep rates and 
is widely used in many articles [47–49]. For supercapacitors, 
however, on account of the large range of sweep rate, this 
method is not appropriate. As shown in Fig. S9, the cal‑
culated areas originated from capacitive contribution (k1v) 

(3)i = av
b

(4)i = iEDLC + idiff = k1v + k2v
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exhibit strange shapes for all electrodes, of which the CVs 
are collected using the sweep rate from 5 to 25 mV/s. This 
can be explained by the theory mentioned in Ref. [46]. iEDLC 
and idiff can be expressed in details as Eqs. 5 and 6 [50]:

Herein, n and F are the electron number during the reaction 
(equal to 1 in our case) and faradic constant. Adiff, C0, and 
D0 are the electrochemical active surface area, reactant con‑
centration, and diffusion efficiency of reactant, respectively. 
χ is a dimensionless number. AEDLC and Cd are the electro‑
chemical active area of EDLC and the specific capacitance 
of the double layer with the unit of F cm−2, respectively. 
It is worth mentioning that χ is dependent to sweep rate v. 
Therefore, when the sweep rate range is narrow (the peak 
current does not drastically shift), it is reasonable to treat 
χ as a constant, and thus k2 is also constant. However, in a 
wide sweep rate range (the peak current clearly shift with 
the sweep rate), treating χ as constant is not appropriate, and 
the equation of i = k1v + k2v0.5 can only be applied to the peak 
current rather than the whole CVs [51]. Therefore, k1v and 
k2v0.5 are capacitive and diffusion contribution to the peak 
current, respectively.

Due to the aforementioned reasons, we used the equa‑
tion of i = k1v + k2v0.5 to fit the peak currents, and the fitting 
results are presented in Table 1 and Fig. S10. As shown 
in Table 1, the value of k1v is much lower than k2v0.5 in 
all electrode materials, demonstrating a distinct battery‑
type behavior. The capacitive contributions (k1v) for all 
electrodes are similar, while the diffusion contributions 
(k2v0.5) are quite different.  NiSe2/Ni(OH)2‑2h performs a 
distinctly higher k2v0.5 value of 0.15, larger than its counter‑
parts, associated with its largest specific capacity, implying 
the largest amounts of electroactive sites. Considering in 
that the electroactive sites are mainly from Ni(OH)2 and 
that  NiSe2/Ni(OH)2‑2h does not have the largest Ni(OH)2 

(5)idiff = k1v
0.5 = nFAdiffC0

(

D0

)0.5
(t)AdiffD

0.5

0
,= nFv∕RT

(6)iEDLC = k2v = AEDLCCd
vAEDLC

weight ratio, it is reasonable to conclude that the optimized 
Ni(OH)2 amounts are necessary to guarantee the full utiliza‑
tion of the fast electron transportation in the heterojunction. 
Smaller amounts of Ni(OH)2 cannot provide enough active 
sites. Overgrowth of Ni(OH)2 leads to poor porosity and 
difficult transportation of electrons from active sites to the 
heterojunction. Both of them are detrimental to the specific 
capacity and rate performances.

We believe the enhancement of the battery‑type  NiSe2/
Ni(OH)2 heterojunction electrode performances is mainly 
associated with the synergistic effects of this unique com‑
posite material. As is known, the fast ion migration and rapid 
electronic conductivity are essential for the performance 
of an electrode. The pure  NiSe2 nano‑octahedra deliver a 
high electronic conductivity, but the low porosity cannot 
provide enough electrochemical active sites. After careful 
treatments, hierarchical porous Ni(OH)2 shell forms on the 
outer surfaces of  NiSe2, providing abundant electrochemical 
active sites. Furthermore, the hierarchically porous struc‑
ture provides rich pores for the ion migration (supported by 
the BET analysis), and the  NiSe2/Ni(OH)2 heterojunction 
enabling the fast electron transportation at the interfaces 
(supported by the DFT calculations). Therefore, due to the 
formation of the  NiSe2/Ni(OH)2 heterojunction, both the 
electron conductivity of the  NiSe2 and the fast ion migration 
in Ni(OH)2 are fully utilized, enabling the remarkable per‑
formances of the  NiSe2/Ni(OH)2 heterojunction electrode.

The contribution of  NiSe2 and Ni(OH)2 is also analyzed, 
and the results are shown in Table S5. It is clearly seen that 
with the formation of Ni(OH)2, the  NiSe2 contribution to the 
SC value decreases. We suggest it is due to the decreasing 
amounts of  NiSe2. The Ni(OH)2 contribution reaches the 
maximum in  NiSe2/Ni(OH)2‑2h, although the Ni(OH)2 frac‑
tion is larger in  NiSe2/Ni(OH)2‑3h and  NiSe2/Ni(OH)2‑6h 
associated with that the over crystallized Ni(OH)2 does not 
present ideal pore structure, confirmed by the BET analyses. 

Table 1  Fitted results of oxide peak current density versus scan rate (v = 0.025 V s−1)

k1 k2 EDLC contributions k1 × v Diffusion contributions 
k2 × v0.5

Reduced 
Chi‑
square

NiSe2 − 0.083 0.60 − 0.00208 0.0949 4.2 E−7

NiSe2/Ni(OH)2‑1h 0.35 0.64 0.00875 0.103 3.7 E−6

NiSe2/Ni(OH)2‑2h 0.27 0.95 0.00675 0.150 3.7 E−6

NiSe2/Ni(OH)2‑3h 0.21 0.74 0.00525 0.117 2.2 E−6

NiSe2/Ni(OH)2‑6h 0.25 0.50 0.00625 0.0791 1.8 E−6
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The  NiSe2/Ni(OH)2‑2h presents the largest specific surface 
area of 88.17 m2 g−1.

Therefore, we can conclude that the outstanding perfor‑
mance of  NiSe2/Ni(OH)2‑2h is attributed to the following 
reasons: First, the heterojunction between Ni(OH)2 with high 
electrochemical activity and  NiSe2 with high conductivity 
improves the charge transportation within the electrode, 
enabling higher electrochemical activity. Meanwhile, the 
large specific surface area and abundant microscopes are 
preferable for the diffusion and transportation of electrolyte. 
Furthermore, the  NiSe2 octahedra foundation with high crys‑
tallinity is highly stable, enabling the long charge–discharge 
life.

3.3  Performances of the  NiSe2/Ni(OH)2‑2h//PPD‑rGO 
Asymmetric Supercapacitor

The remarkable supercapacitance performance of  NiSe2/
Ni(OH)2‑2h is due to the porous Ni(OH)2 enabling the fast 
ion migration, the conductive and stable  NiSe2 octahedra 
ensuring the fast electron migration and cycling stability, 
as well as the  NiSe2/Ni(OH)2 heterojunction offering an 
easy electron transportation from electroactive Ni(OH)2 to 
conductive  NiSe2. For further investigating, the application 
of  NiSe2/Ni(OH)2‑2h for supercapacitors, a button asym‑
metric supercapacitor, was fabricated using 2.5 mg  NiSe2/
Ni(OH)2‑2h as positive electrode and 4 mg PPD‑rGO as neg‑
ative electrode, as illustrated in Fig. 5a. The electrochemical 
performances of PPD‑rGO are illustrated in Fig. S7f, l, and 
the FT‑IR spectrum and the SEM image of PPD‑rGO are 
presented in Fig. S11. The CV curves of PPD‑rGO exhibit 
a typical double‑layer capacitance behavior. Even at a high 
scan rate of 200 mV s−1, it still remains a rectangle shape, 
indicating a fast charge transfer kinetics. The GCD curves 
of PPD‑rGO from 1 to 50 A g−1 present a triangular shape 
and excellent symmetry, suggesting the highly reversible of 
charge–discharge process. Based on the GCDs, the specific 
capacity of PPD‑rGO is calculated as 504 C g−1 (504 F g−1), 
and a high value of 319 C g−1 (319 F g−1) at 50 A g−1 indi‑
cates its excellent rate capability.

The electrochemical performances of  NiSe2/Ni(OH)2‑
2h//PPD‑rGO asymmetric supercapacitor are presented 
in Figs. 5b–f and S12. Calculated from the GCD curves 
of  NiSe2/Ni(OH)2‑2h//PPD‑rGO, at a current density 
of 1 A g−1, an ultrahigh specific capacity of 302 C g−1 

(189 F g−1) can be obtained. Furthermore, almost 100% 
coulomb efficiencies were acquired at different current den‑
sities (Fig. 5d). The energy density and power density can 
be acquired using Eqs. 7 and 8, and the results are shown 
in Fig. 5e [51]:

At the power density of 906.4  W  kg−1, the  NiSe2/
Ni(OH)2‑2h//PPD‑rGO is able to achieve the ultrahigh 
energy density of 76.1 Wh kg−1. Moreover, the  NiSe2/
Ni(OH)2‑2h//PPD‑rGO exhibits a higher energy density 
and power density than many advanced asymmetric super‑
capacitors reported recently, such as NiCoP/NiCo‑OH//
AC [32],  NiSe2//AC [39],  NiCo2O4//AC [52], Ni(OH)2//
AC [53],  Cu3SbS4/Ni‑5//Cu2MoS4/Ni [54], ZnNiCo‑P//
PPD‑rGOs [27], CoNi‑MOF//AC [55],  NiCoS2//AC [56], 
and Ag‑rGO/Ni(OH)2//AC [57] (Fig. 5e and Table S6). 
Take the advantage of high energy density and power den‑
sity, these asymmetric supercapacitors can drive two elec‑
tric fans for rotation. A red LED (1.6–3 V, 20 mA) 800 
can also be lighted using the  NiSe2/Ni(OH)2‑2h//PPD‑
rGO asymmetric supercapacitor device. More impor‑
tantly, the cycling stability test indicates this asymmetric 
device can have 82% retention of its original capacity 
after 8000 cycles. These tests strongly demonstrate the 
potential practical application of this asymmetric super‑
capacitor device.

4  Conclusions

In summary, using  NiSe2 nano‑octahedra as the precursor, 
 NiSe2/Ni(OH)2 heterojunction composites with large spe‑
cific surface areas and rich micropores, as well as good elec‑
tron conductivity, were successfully constructed through a 
epitaxial‑like growth strategy. The porous Ni(OH)2 enables 
the fast ion migration and large amount of electrochemi‑
cal active sites, and the  NiSe2 nano‑octahedra offer electron 
conductivity and mechanical strength for cycling stability. 
Noteworthy, the  NiSe2/Ni(OH)2 heterojunction provid‑
ing easy electron transportation from Ni(OH)2 to  NiSe2, 
confirmed by the DFT calculations, is the domain reason 
contributing to the synergistic effects. Therefore, the  NiSe2/

(7)E =
I

m

t2

∫
t1

Vdt

(8)P =
E

Δt
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Ni(OH)2 heterojunction composites obtained under opti‑
mized reaction conditions deliver a high specific capacity 
of 909 C g−1 at 1 A g−1, an excellent cycling performance 
of 85% capacity retention after 5000 cycles. Furthermore, 
the fabricated  NiSe2/Ni(OH)2//PPD‑rGO button asym‑
metric supercapacitors achieve ultrahigh energy density of 
76.1 Wh kg−1 at 906 W kg−1 and outstanding cycling stabil‑
ity of 82% capacity retention after 8000 cycles, indicating 
tremendous potential in practical application. Our work here 
provides a novel strategy to synthesize high‑performance 
selenide/hydroxide composites. It needs more efforts to 
investigate if this method can be applied to other transition 
metal chalcogenide.
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