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HIGHLIGHTS

• The crystalline Fe/MnO@C core–shell nanocapsules embedded in porous amorphous carbon matrix (FMCA) was prepared by a novel 
confinement strategy of modified arc-discharge method.

• The heterogeneous crystalline–amorphous nanocrystals disperse evenly and exhibit improvement of static magnetization and excellent 
electromagnetic absorption properties.

• The adding  MnO2 confines degree of graphitization and contributes to form amorphous carbon. Dielectric loss and microwave absorp-
tion are achieved adjustable.

ABSTRACT Crystalline Fe/MnO@C core–shell nanocapsules inlaid 
in porous amorphous carbon matrix (FMCA) was synthesized suc-
cessfully with a novel confinement strategy. The heterogeneous Fe/
MnO nanocrystals are with approximate single-domain size which 
gives rise to natural resonance in 2–18 GHz. The addition of  MnO2 
confines degree of graphitization catalyzed by iron and contributes 
to the formation of amorphous carbon. The heterogeneous materials 
composed of crystalline–amorphous structures disperse evenly and its 
density is significantly reduced on account of porous properties. Mean-
while, adjustable dielectric loss is achieved by interrupting Fe core 
aggregation and stacking graphene conductive network. The dielectric 
loss synergistically with magnetic loss endows the FMCA enhanced 
absorption. The optimal reflection loss (RL) is up to − 45 dB, and the 
effective bandwidth (RL < − 10 dB) is 5.0 GHz with 2.0 mm thick-
ness. The proposed confinement strategy not only lays the foundation 
for designing high-performance microwave absorber, but also offers a 
general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
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1 Introduction

As science and technology develop dramatically fast, 
electromagnetic radiation pollution has become a grow-
ing problem due to the explosive growth in the application 
of electronic devices, such as radar systems, local area 
networks, telephones, and computers. Overexposure to 
electromagnetic wave can not only affect the functioning 
of electronic equipment but also be potentially detrimen-
tal to human being and raise severe problems concerning 
the field of military applications [1–3]. Therefore, it has 
spurred internationally unprecedented interest in explor-
ing microwave absorbing materials, which converts elec-
tromagnetic wave into energy in other forms [4, 5]. For 
practical applications, desirable microwave absorbing 
materials are supposed to possess key features of high 
absorptive capacity, broad effective bandwidth, light 
weight, and low filler loading ratio [6–8]. Thus, it is urgent 
to develop materials with satisfaction of these conditions 
simultaneously.

Soft magnetic metal and alloys (i.e., Fe, Co, Ni, and their 
alloys) have been extensively applied for electromagnetic 
wave-absorbing materials because of their strong ferromag-
netic properties, widely magnetic anisotropy, and popular 
domain wall displacement [9–11]. Nevertheless, the Snoek’s 
limit, poor impedance matching, large density, easy oxida-
tion, and magnetic aggregation restrict their electromagnetic 
wave absorption property. In order to overcome these prob-
lems and further improve their microwave absorption prop-
erties, the magnetic materials are usually recombined with 
different dielectric materials, which is on base of the synergy 
of magnetic and dielectric mechanisms. Among plenty of 
dielectric loss medium, carbon materials are superior in the 
field of microwave absorption in virtue of their special mer-
its, such as chemical stability, tunable physical and chemical 
properties, and various forms [7, 12–26]. Specially, mas-
sive efforts have been devoted continuously to develop-
ing absorbers, constituting carbon materials and magnetic 
metal iron composition recently. In past, the multicomponent 
hybrids Fe@C nanocapsules [27], Fe–C nanofibers [28], 
graphene-coated Fe nanoparticles [29], Fe@C microspheres 
[1], mesoporous Fe/C composition [30], C@Fe2O3/Fe3C/
Fe–CNT nanoparticle decorated carbon nanotubes [31] dis-
play good electromagnetic absorption capabilities and wide 
effective frequency range to some extent.

Despite the promising progresses aforementioned, great 
problems remain to be resolved. At first, it is rather challeng-
ing and still imperative to tune the magnetic nanoparticles 
size and distribution by rational design and construction of 
architectures of microwave absorption materials to solve 
the problem of random distribution and serious aggrega-
tion. Second, carbon-magnetic composite possesses over-
high electrical conductivity owing to the laminated carbon 
structure, which results in the occurrence of significant skin 
effects under electromagnetic wave. Third,  Fe3C is always 
inescapable accompanied by reaction. More importantly, the 
magnetic dilution will generate due to the introduction of 
nonmagnetic dielectric components.

It is inspired from researches to fabricate crystal-
line–amorphous composition comprised amorphous matrix 
and dispersed nanocrystalline [2, 32, 33], in which the 
unique construction conduces to the uniform dispersion of 
the magnetic nanoparticles, shows a high density interfaces 
and significant interfacial polarizations, benefiting for micro-
wave attenuation. Hence, it is promising to find a simple 
method to construct heterogeneous material composed of 
crystalline–amorphous structure. One feasible approach is 
introduction of transition metal oxide MnO to construct het-
erogeneous crystalline–amorphous Fe–C-based composition 
with nanoscale architectures and further boost microwave 
absorption performance. The MnO in size of nanoscale con-
tributes to produce more dipoles and dipolar relaxation [34]. 
MnO dispersed on the surface of graphene can also weaken 
the � − � stacking interactions [35]. Otherwise, introduc-
ing MnO increases the heterostructure among MnO, Fe, and 
carbon, which can result in unpaired spins, form plentiful 
magnetic moments and further induce magnetic ordering in 
materials [36].

Herein, a kind of crystalline Fe/MnO@C core–shell nano-
capsules inlaid in porous amorphous carbon was success-
fully prepared by arc-discharge method, which generates 
abundant interfaces because of graphitized graphene and 
amorphous carbon. The layer of graphene and size of disper-
sive Fe/MnO nanocrystal can be tuned by introduction con-
tent of MnO. And the magnetic dilution is compensated via 
enhanced surface anisotropy and resonance where Fe nano-
particles are confined about single-domain size. The novel 
configuration of Fe/MnO@C core–shell structure embedded 
in amorphous carbon not only suppresses the agglomeration 
of magnetic particles and consequent skin effect, but also 
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provides good chemical homogeneity and sufficient inter-
faces between Fe/MnO nanoparticles and carbon. Besides, 
inescapable  Fe3C accompanied by conventional reaction is 
suppressed in this method. On this basis, in corporation of 
magnetic metal with dielectric material, superb microwave 
absorption performance comes from efficient complemen-
tarities integrating permittivity with permeability. This 
study aims to develop convenient method to construct mag-
netic nanocrystals-carbon crystalline–amorphous structure 
high-performance microwave absorption. Moreover, it is to 
investigate the synergistic interaction between the magnetic 
nanocrystals and carbon matrix for practical applications 
in future.

2  Experimental Procedures

2.1  Synthesis

The porous amorphous carbon embedding crystalline Fe/
MnO@C core–shell nanoparticles (FMCA) was prepared by 
an arc-discharged plasma technique. A compressed mixture 
of iron and manganese dioxide powders was attached to a 
water-cooled copper stage as the anode, and the carbon rod 
fixed on the opposite side served as the cathode. The cham-
ber was evacuated to ~ 10−3 Pa, and then, the methane  (CH4) 
was introduced to be 0.2 × 10−3 Pa as a gaseous source. The 
arc discharge was controlled simultaneously at ~ 30 V and 
~ 90 A for 5–10 min by adjusting the distance between the 
two electrodes. The as-made FMCA nano-powders were 
collected after about 6 h and stored at ambient. The result-
ant FMCA were termed as FMCA-1, FMCA-2, FMCA-3, 
FMCA-4, FMCA-5, FMCA-6, and FMCA-7, corresponding 
to Fe mass ratios of 54%, 52%, 49%, 42%, 55%, 57%, and 
60%, respectively.

2.2  Characterization

The crystal structure of the samples was studied by X-ray 
powder diffraction (XRD, SHIMADZU, XRD-6000) with 
Cu Kα radiation, using an operation voltage and current of 
40.0 kV and 30.0 mA, correspondingly. The scanning range 
was from the degree of 10° to 80° (2θ) and the scan speed 
was 4°  minA. Transmission electron microscope (TEM) 
images were obtained by JEOLJMF-2100F field emission 
transmission electron microscope at an accelerating voltage 

of 200 kV. The chemical bonding state of the nanocom-
posites was analyzed by X-ray photoelectron spectroscopy 
(XPS). The magnetic hysteresis loop was determined by 
Lake Shore vibrating sample magnetometer (VSM) with a 
magnetic field range of 17 KOe.

2.3  Electromagnetic Measurement

The relative complex permittivity and permeability versus 
frequency were obtained by coaxial reflection/transmission 
method using Agilent 8722ES vector network analyzer with 
the working frequency at 2–18 GHz. The cylindrical sample 
(with 3 mm in inner diameter, 7 mm in outer diameter and 
2 mm in thickness) was fabricated by uniformly mixing par-
affin matrix with 50 wt% absorbents. Then, the composite 
was pressed into cylindrical compacts. The transmission line 
theory was introduced to characterize the wave-absorbing 
properties, which is designated as reflection loss (RL).

3  Results and Analysis

3.1  Structure and Phase Characterization

The morphologies and structure are initially investigated 
by scanning electron microscope (SEM). All the samples 
display an aggregated yet microsphere-shaped morphology, 
as shown in Fig. 1a–d. The regular microspheres are uni-
form distribution. The element mapping reveals that Fe, Mn, 
O, and C elements are uniformly distributed in FMCA-1 
(Fig. 1e–i).

Microstructure of the samples is further observed by 
TEM. Figure 2a1–d1 shows spherical Fe/MnO@C nano-
capsules embedded in the amorphous carbon. Obviously, 
two kinds of carbon with different morphology of graph-
ite carbon and amorphous carbon are formed by arc-dis-
charge method. An enlargement of the nanocomposite in 
Fig. 2a2–d2 reveals that amorphous carbon wraps on Fe/
MnO@C nanocapsules forming a double-shell microstruc-
ture. The HRTEM image indicates that Fe/MnO core is well 
coated by C shells. The embedded Fe/MnO@C nanocap-
sules are proved in very high degree of crystallinity. From 
Fig. 2a3–d3, the inter-plane distance between fringes of 0.25, 
0.23, and 0.35 nm, correspond to the (110) crystal plane of 
metallic Fe, (200) plane of MnO, and (002) plane of gra-
phitic carbon, respectively. Lots of distorted lattices are 
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found on carbon-rich buffer layers. Some pronounced lattice 
defects, such as C-breakage and serious ripples, are present 
on the carbon layers, which mainly arise from the effect of 
energetic  Ar+/H+ ions of plasma and the fast quenching by 
means of energy exchange during reaction process. Addi-
tionally, the addition of  MnO2 confines growth of the Fe/
MnO nanocrystal. The average size of Fe/MnO@C nanocap-
sules is approximately below 50 nm. Under the protection 
of carbon matrix, Fe/MnO nanocrystals show distinct mor-
phology and fine dispersion without severe agglomeration.

The electron energy loss spectroscopy (EELS) elemental 
mapping of FMCA composition shows that Fe, Mn, and O 
elements completely overlap due to the diffusion of Fe and 
MnO during the sample preparation process (Fig. S1). The 
well distribution of Fe nanoparticles in Fe/MnO@C nano-
capsules ascribe to the isolation effect of MnO and confine 
effect of graphite carbon and amorphous carbon matrix. 
Besides, the crystalline graphite thicknesses of samples 
FMCA-1, FMCA-2, FMCA-3, and FMCA-4 are 11, 7, 3, and 
2–3 layers, respectively. The graphite layers decrease with 
the reduction of Fe content while increasing MnO content, 
which further manifests that some of the amorphous carbon 
could be transformed into graphite by Fe catalysis graphiti-
zation process. The different graphite thickness indicates dif-
ferent amount of hetero-interface in the composition. But it 
is hard to definite the number. The morphology with multi-
ple interfaces is helpful for multiple interfacial depolariza-
tion, interfacial scatterings, and diffuse scattering of micro-
wave. For comparison, Fe@C compositions are synthesized 

under the same condition without the addition of  MnO2. In 
Fig. S2, the morphology of Fe@C compositions exhibits a 
reticulum-like porous structure, and Fe nanoparticles ran-
domly distributes and encloses by the overlapped graphene 
nanosheets. High resolution TEM images in Fig. S2b illus-
trates the well-developed graphene layers with inter-plane 
spacing 0.36 nm wrapped on Fe nanoparticle, depicting the 
(110) crystal plane of metallic Fe phase with inter-plane 
spacing 0.25 nm. There is no observation of amorphous car-
bon in the Fe@C compositions. The highly graphitization 
degree may be harmful for the microwave absorption. By 
contrast, Fe facilitates the crystallization of carbon during 
the reaction, whereas MnO reduces the crystallization of car-
bon and contributes to the formation of amorphous carbon 
in the reaction. Moreover, the elemental mapping of a single 
Fe/MnO@C nanocapsules further manifests the distributions 
of Fe, Mn, O, and C element with uniformly and dispersity 
(Fig. 2e–i). The nanocapsules tightly encapsulated by car-
bon matrix would facilitate the transfer of charge carriers 
between Fe, MnO, and C, thus promoting excellent dielectric 
properties. Hence, this representative structure may contrib-
ute to electromagnetic attenuation.

The crystalline structure of the synthetic nanocompos-
ites is measured by XRD analysis (Fig. 3a). The diffrac-
tion peaks of 44.7°, 65.0°, and 82.3° are indexed to (110), 
(200), and (211) crystal planes of cubic Fe (JCPDS No. 
06-0696). Three diffraction peaks appear at 35.0°, 40.7°, 
and 58.9° can be indexed to (111), (200), and (220) planes, 
respectively, of the cubic MnO (JCPDS No. 75-0626). The 

Fig. 1  SEM images of different samples: a FMCA-1, b FMCA-2, c FMCA-3, and d FMCA-4. e–i Elemental mapping images of FMCA-1
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small hump is assigned to amorphous carbon, which indi-
cates that the presence of MnO weaken the catalytic effect 
of iron species in the crystallization of carbon components 
[37]. The hierarchically porous structure of FMCA com-
position is further confirmed by nitrogen adsorption–des-
orption isotherms analysis. FMCA-3 reveals typical IV 
type curve, manifesting existence of amounts of mesopores 
(Fig. S3). This result, forming porous structure of crys-
talline Fe/MnO@C-amorphous carbon composition, is 

coordinated with that of TEM and XRD. The large specific 
surface area and porous structure benefit the improvement 
of impedance matching behavior and microwave attenua-
tion [38–44]. The surface areas and pores is conducive to 
impedance of fillers and boosts microwave penetrating into 
materials, which is a competent way to broaden absorption 
bandwidth. Meanwhile, abundant pores in filler can gener-
ate multiply scattering of microwave because of extending 
the transmission path of incident electromagnetic wave. 

Fig. 2  TEM and high resolution TEM images: a1–a3 FMCA-1, b1–b3 FMCA-2, c1–c3 FMCA-3, and d1–d3 FMCA-4. HAADF-STEM images 
of e single Fe/MnO nanocrystal and f–i elemental mapping images
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In addition, the specific carbon content and iron content 
are ascertained by thermogravimetric (TG) analysis and 
X-ray fluorescence spectroscopy in composites as shown 
in Fig. S4.

From the TEM images and XRD result aforemen-
tioned, graphitization degree of FMCA composite is low 
and bonding state of carbon atoms is observed differently. 
Meanwhile, Raman spectroscopy is used to identify the 
degree of graphitization in carbonaceous materials. In 
Fig. 3b, the prepared amorphous carbon embedded with 
dispersed Fe/MnO@C nanocapsules present two promi-
nent peaks at around 1580 (D band) and 1348 cm−1 (G 
band). G band denotes the vibration of sp2 hybridization, 
and D band denotes sp3 defects and disorder, respectively 
[45]. In general, the bigger ID/IG value (intensity ratio of D 
to G band) is, the higher degree of disorder signifies. The 
calculated values of ID/IG for FMCA-1, FMCA-2, FMCA-
3, and FMCA-4 are 0.86, 0.87, 0.97, and 0.81, respec-
tively. Therefore, the ID/IG FMCA-1, FMCA-2, FMCA-
3, and FMCA-4 exhibits uptrend except FMCA-4, which 
ascribes to the increase in additive amount of MnO and 
decrease in carbon amount. When the dosage of MnO is 
gradually increased, relative content of amorphous carbon 
is further consolidated. And the content of MnO testifies 

uptrend as the intensity of peak at 621 cm−1 increasing. 
Additionally, 2D peak appears at 2689 cm−1 indicating 
several graphene layers in FMCA composition, which is 
in agreement with high resolution TEM images (Fig. 2). 
Note that, ID/IG for FMCA-4 is obvious extraordinary 
from other samples. This is attributed to the low amount 
of carbon materials. The surface chemical composition 
and valence states are further performed by XPS.

As shown in Fig. 3c, the survey scan taken from FMCA-3 
confirms the presence of Fe, Mn, O, and C elements. From 
Fig. 3d, the peaks at 284.5, 286.1, and 289.0 eV of C 1s can 
be assigned to C–C/C=C, C=O, and C–OH bonds, respec-
tively [46]. In Fig. 3e, the O 1s spectrum displays three 
peaks at 532.3, 530.8, and 529.2 eV, which ascribes to resid-
ual structure water (H–O–H), hydrated manganese oxides 
(Mn–O–H), and anhydrous manganese oxides (Mn–O–Mn), 
respectively. From Fig. 3f, the Fe 2p spectrum exhibits two 
peaks at 684.0 and 686.1 eV, which correspond to the Fe 
2p3/2 and Fe 2p1/2, respectively. Thus, the analysis results 
of XPS reveal the synthesis of metallic Fe in the sample. 
As shown in Fig. 3g, the fitted Mn 2p spectra exhibit  Mn2+, 
consistent with the results obtained from XRD.

In basics of structural characterization, the formation 
process for FMCA composition is well comprehended as 
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shown in Fig. 4. There are three stages in forming process, 
i.e., the evaporation, nucleation/growth, and catalyzed gra-
phitization. In the first stage, the raw materials of bulk Fe 
and  MnO2, gaseous  CH4 are completely co-evaporated by 
high-energy arc-plasma into gaseous atoms. In the second 
stage, the evaporated atoms of raw species will orderly 
undergo nucleation and growth. It depends on the melting 
points of MnO (1650 °C) and Fe (1600 °C). The MnO and 
Fe seeds will nucleate once achieving melting point. At the 
same time, the diffusion of Fe and MnO is companied with 
nucleation because of a very similar melting point. The 
MnO nanoparticle restricts the Fe cluster extensive grown 
and the particles are in nanometer-scale. The prepared Fe/
MnO nanocrystals exhibit their sphere-like morphologies 
and the amorphous carbon matrix make them protected from 
oxidization. Supersaturated carbon in the Fe/MnO lattice 
undergoes fast quenching during escaping out of the cen-
tral arc district to the water-cooled chamber wall. The satu-
rated carbon atoms separate into the carbon matrix where 
considerable stress is produced in-plane with the carbon 
layers. At the last stage, amorphous carbon adjacent to Fe/
MnO nanocrystal is converted to crystalline graphite due to 
catalysis of iron. On the one hand, the wrapped amorphous 
carbon matrix and the crystalline graphite are involved in the 
protection of Fe nanocrystal against oxidative damage. The 
normal stress concentrates at the largest convex curvature of 
the ellipsoid-like nanoparticles and creates serious deforma-
tion of the carbon layers. On the other hand, Fe nanoparti-
cles are confined in the crystalline graphite and disperse 
uniformly with MnO. The novel configuration can suppress 
the agglomeration of magnetic particles and consequent 

skin effect, and contribute good chemical homogeneity and 
sufficient interfaces between Fe/MnO nanoparticles and C. 
Besides, the addition of MnO avoids the formation of  Fe3C 
in conventional iron–carbon compounds.

3.2  Static Magnetization

The electromagnetic wave absorption property is closely 
related to the magnetic performance. Theoretically, mag-
netic loss ability ( �′′ ) is tightly related to magnetization 
value. As explained by the equation: ��� = (M∕H) sin � , 
where M represents the magnetization, H is the external 
magnetic field, σ is the phase lag angle of magnetization 
behind external magnetic field. According to the equation, 
a higher magnetization value results in improvement of 
magnetic loss ability ( �′′ ) value [47]. Figure 5a depicts the 
magnetic hysteresis loops of FMCA-1, FMCA-2, FMCA-
3, and FMCA-4. Obviously, the samples present typical 
ferromagnetic hysteresis behavior with saturation mag-
netization (Ms) being 41.1, 52.7, 51.8, and 58.3 emu g−1, 
respectively, benefiting for the magnetic loss [48]. As is 
well known, the magnetic properties derive from coupling 
between electron spin and its orbital angular momentum 
[49]. Nanoparticles always show superparamagnetic 
properties due to magneto crystalline anisotropy, which 
is different from bulk materials. The magnetic particles 
in Fe/MnO nanocrystals are deemed as single-domain 
particles with critical diameter (Dc) close to 20 nm. The 
magnetic anisotropy energy is responsible for holding 
the magnetic moments along a certain direction, which is 
expressed as E(�) = K

eff
V sin

2 � , where V  donates volume 
of the particle, K

eff
 is the anisotropy constant, and � is the 

angle between the magnetization and the easy axis. The 
magnetization with two energetically easy directions is 
separated by the energy of barrier K

eff
V  . If the particle 

volume V  is extremely small, the thermal energy ( K
B
T  ) 

is sufficient to overcome the anisotropy barrier ( K
eff
V  ) of 

the orientation of a well-isolated single-domain particle. 
When K

B
T > K

eff
V  , a single nanoparticle behaves like a 

giant paramagnet and is superparamagnetic. This can be 
the reason that the saturation magnetization of the samples 
presents uptrend even through the Fe content decrease. 
Furthermore, metal nanoparticles are easily oxidized, and 
value of Ms is high with minimizing ratio of oxidation. 
Meanwhile, the nanoparticle size is controlled to avoid 
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a reduction of Ms because of oxides and surface disorder 
[50]. Herein, the above problems can easily be overcome 
in this work. Since the crystalline Fe/MnO@C-amorphous 
carbon composition is subtly constructed to control the 
oxidation and the particle size xudong.wang@wisc.edu 
(Xudong Wang); caozq@dlut.edu.cn (Zhiqiang Cao); 
ymao@zzu.edu.cn (Yanchao Mao) while taking the advan-
tage of different existing forms of graphite, which is easy 
to scale up and confine the sacrifices of magnetic loss. 
Moreover, by adjusting the Fe mass ratios to 60%, a strong 
magnetization can be achieved as shown in Fig. 5b. The 
rationally designed FMCA composites reveal an excel-
lent magnetic performance, which opens up a new path to 
restrict sacrifices of magnetic loss.

3.3  Electromagnetic Parameters and Microwave 
Absorption Performance

The electromagnetic wave absorption performance mainly 
depends on complex permittivity ( �r = �� − j��� ) and perme-
ability ( �r = �� − j��� ) [51, 52]. The complex permittivity 
for the Fe@C composition is shown in Fig. S5. Both �′ and 
�′′ decrease rapidly with adding  MnO2 during the reaction 
as shown in Fig. 6a, b. Figure 6c, d displays the complex 
permeability. The �′ value exhibits downtrend after the addi-
tion of MnO. Resonance peaks appear in the � − f  curves 
(Fig. 6c, d). Large values of �′ and �′′ endow strong attenu-
ation capability (Fig. S6), which may lead to a poor imped-
ance matching. The dielectric loss tangents ( tan �

e
= ���∕�� ) 

further exhibit that dielectric loss ability of theses compos-
ites. The order of dielectric loss ability is same as that of 
complex permittivity (Fig. 6e). The dielectric loss tangent 
also decreases with addition of MnO. Compared with dielec-
tric loss tangent, the value of magnetic loss tangent is small 
for FMCA samples (Fig. S7a). This is mainly put down to 
the introduction of nonmagnetic MnO and carbon matrix.

The dielectric loss, magnetic loss, and impedance 
matching determine collectively electromagnetic wave 
absorption performance [53]. The magnetic loss mainly 
comes from domain-well resonance, hysteresis loss, eddy 
current effect, natural and exchange resonance [54]. The 
domain-wall resonance is excluded from the GHz range. 
And the hysteresis loss is negligible in weak applied field 
[55]. When magnetic loss only originates from eddy cur-
rent effect, C

0
= ���

(

��
)−2

f −1 should tend to be a straight 
line. C0 is fluctuant over 2–18 GHz (Fig. S7b), it indi-
cates that the natural resonance has also been devoted 
to the magnetic loss. The peaks around 7.3  GHz are 
observed in Fig. 6c, which attributes to the natural reso-
nances of the FMCA-1, FMCA-2, FMCA-3, and FMCA-4. 
f
r
= 2�K

eff
∕M

s
 expresses frequency of natural resonance, 

where K
eff

 donates the effective anisotropy constant, � the 
gyromagnetic ratio, and M

s
 the saturation magnetization 

[56]. The effective anisotropy constant relies on the size 
of particles and surface effect, given by K

eff
= K

v
+ 6K

s
∕R , 

where K
v
 represents the volume anisotropy constant, K

s
 the 

surface anisotropy constant, and R the radius of the nano-
particles [57]. K

eff
 is enhanced with small size of the Fe/

MnO@C nanocapsule due to the confinement effect. M
s
 of 
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the crystalline FMCA composition decreases as the intro-
duction of nonmagnetic MnO compared to that of Fe@C 
composition. However, value of Ms presents uptrend even 

through the decrease content of magnetic Fe. Hence, f
r
 

appears in higher frequency of 7.3 GHz. Resonance peak 
around 13.6 GHz ascribes to the exchange resonance since 
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it has been well-documented to locate at high frequency 
[58, 59].

Generally, dielectric loss primarily derives from polari-
zation and conductivity loss. And polarization loss 
includes dipolar polarization, interfacial polarization, 
ionic polarization, and electronic polarization. Ionic 

polarization and electronic polarization are excluded in 
microwave range because they appear at high frequency of 
 103–106 GHz. Thus, the main dielectric attenuation mech-
anism is dipolar polarization and interfacial polarization. 
The dipolar polarization appears at molecule with obvious 
dipole moment. The interfacial polarization usually 
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generates in a heterogeneous structure due to the accumu-
lation and uneven distribution of space charges. The polar-
ization process is investigated via Cole–Cole curves based 
on 

(

�� −
(

�
s
+ �∞

)

∕2
)2

+
(

���
)2

=
(

(

�
s
− �∞)∕2

)2
)

 [60]. 

The excessive dielectric loss of Fe@C composition leads 
to mismatched impedance due to formation of the 

conductive Fe and graphite network. For respective 
Cole–Cole curves of FMCA-1, FMCA-2, FMCA-3, and 
FMCA-4 (Fig. 7), three semicircles are observed obvi-
ously, manifesting significant polarization in composites. 
The heterogeneous interface between Fe/MnO nanocrys-
tals and crystalline graphite, crystalline graphite, and 
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amorphous carbon endows multiple dielectric relaxation 
processes. But simultaneously, the Cole–Cole curves show 
long tail and semicircles distort somewhat. This indicates 
that the conductive loss also dominates in the dielectric 
loss. Introduction of MnO nanoparticles rationally can 
inhibit iron agglomeration and decrease conductivity, 
forming the homo-disperse of Fe and MnO, and generate 
interface between carbon matrix and Fe/MnO nanocrystal. 
For comparison, Cole–Cole curves plot is line and no 

semicircles can be observed of the Fe@C composition 
(Fig. 7e). This reveals conduction loss dominates for die-
lectric loss for Fe@C composition. Thus, the FMCA com-
position interrupts the Fe and carbon conductive network. 
The dielectric loss decreases for FMCA-1, FMCA-2, 
FMCA-3, and FMCA-4 based on the free electron theory 
[38, 61].

RL of FMCA composition is calculated in basic of the 
complex permittivity and complex permeability (Fig. 8a–d). 
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Improved performance is achieved after addition of MnO. 
The minimum reflection loss for FMCA-1 exhibits − 37.5 dB 
at 12.5 GHz together with an effective absorbing bandwidth 
of 4.8 GHz at a small absorber thickness of 2 mm (Fig. 8a). 
The FMCA-2 shows absorption property with minimum 
reflection loss of − 22.3 dB and an effective absorption 
bandwidth of 5.1 dB with thin thickness of 2 mm (Fig. 8b). 
With increased  MnO2 content, the minimum reflection loss 
reaches − 45 dB with thickness of 5.5 mm for FMCA-3 and 
4 mm for FMCA-4 (Fig. 8c, d). And the effective absorp-
tion bandwidth achieves 5.0 dB at thickness of 2 mm. The 
minimum reflection loss value for Fe@C composition is only 
− 5.6 dB due to the large dielectric loss (Fig. 8e).

Visibly, such excellent absorbing properties for FMCA-3 
primarily ascribes to well impedance matching degree ∆. 
In general, large integration area of ∆ values below 1.0 of 
FMCA-3 demonstrates the better impedance matching in 
Fig. 9c. The reflection of electromagnetic wave is avoided 
at front surface of the absorbers [62, 63]. � and ∆ can be 
realized optimum balance in FMCA-3. Moreover, the FMCA 
compositions possess excellent impedance matching com-
pared with that of Fe@C composition (Fig. 9e), revealing the 
microwave absorption capabilities of FMCA compositions 
can be controllable by regulating the addition of  MnO2.

Overall, the outstanding microwave absorption perfor-
mance of FMCA composites ascribes to the synergistic 
effect of dielectric loss and magnetic loss, derived from 
the interfacial polarization and moderate conductive loss 
of Fe and carbon matrix, along well with natural resonance 
and exchange resonance (Fig. 10). Firstly, dispersed MnO 
nanocrystals avoid agglomeration of Fe particles with 
small size, as shown in Fig. 2a, c. And the introduction 
of MnO decreases the degree of graphitization and fasci-
nates the formation of amorphous carbon matrix. Then, 
the heterogeneous interfaces between Fe/MnO/crystalline 
graphite/amorphous carbon matrix give rise to interfacial 
polarization and large amounts of defects formed, act-
ing as polarized centers which combine to boost electro-
magnetic absorption performance. Secondly, uniformly 
dispersed MnO suppresses the stacking of graphene and 
agglomeration of magnetic particles, consequent restrain-
ing skin effect. Meanwhile, the impedance matching is 
well regulated. The well impedance matching guarantees 
electromagnetic wave entering the absorber. Inside the 
absorber, the multiple scattering and reflecting of micro-
wave increase the propagation paths. This is benefit for 

the attenuation of microwave energy. Third, nanoscale Fe/
MnO nanocrystals in carbon matrix intensely response to 
broad-band microwave based on their induced currents. 
The electromagnetic energy can be converted to the ther-
mal energy quickly [64].

4  Conclusions

The crystalline core–shell Fe/MnO@C nanocapsule inlaid 
in porous amorphous carbon is synthesized by modified 
arc-discharge method. The formed well-distributed Fe/
MnO nanocrystals imped Fe aggregation and interruption 
of graphite conductive network due to introduction MnO, 
resulting in tunable dielectric loss of the heterostructure. 
An increase in MnO brings about natural resonance in 
a specific frequency, multi-reflection at the interface of 
Fe and carbon, dielectric polarization, electron-jumping 
multi-phase envelop structure and size effect. Conse-
quently, good impedance matching and strong attenuation 
capacity can be obtained because of the synergistic effect 
in the magnetic and dielectric loss. The optimal reflec-
tion loss achieves − 45 dB for FMCA-3, and effective 
absorption bandwidth achieves 5.0 dB with 2 mm thick-
ness. This study not only provides insights on the design 
of advanced microwave absorbing materials with low den-
sity and broadband absorption, but also paves a versatile 
way for the large-scale synthesis of porous composites for 
extended applications.
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