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HIGHLIGHTS

• A triboelectric nanogenerator (TENG) and a glucose fuel cell (GFC) were separately designed to harvest biomechanical energy from 
body motion and biochemical energy from glucose molecules.

• A hybrid energy‑harvesting system (HEHS) which consisted of TENG and GFC was developed successfully, and it can simultaneously 
harvest biomechanical energy and biochemical energy.

ABSTRACT Various types of energy exist everywhere around us, 
and these energies can be harvested from multiple sources to power 
micro‑/nanoelectronic system and even personal electronic products. In 
this work, we proposed a hybrid energy‑harvesting system (HEHS) for 
potential in vivo applications. The HEHS consisted of a triboelectric 
nanogenerator and a glucose fuel cell for simultaneously harvesting 
biomechanical energy and biochemical energy in simulated body fluid. 
These two energy‑harvesting units can work individually as a single 
power source or work simultaneously as an integrated system. This 
design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output. Compared with any indi‑
vidual device, the integrated HEHS outputs a superimposed current and has a faster charging rate. Using the harvested energy, HEHS can 
power a calculator or a green light‑emitting diode pattern. Considering the widely existed biomechanical energy and glucose molecules 
in the body, the developed HEHS can be a promising candidate for building in vivo self‑powered healthcare monitoring system.
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1 Introduction

With the fast development of portable and implantable 
electronic devices, various new remarkable techniques 
of energy supplies experienced rapid growth. Relevant 
research studies involve energy generation, energy har‑
vesting, and energy storage for micro‑/nanoelectronic sys‑
tems, which can be used to realize some specific functions 
[1–7]. Besides energy from nature and surroundings (e.g., 
wind energy and solar energy) [8–10], there are also many 
biomechanical and biochemical energy from body can be 
harvested (e.g., respiration, heart beating, and glucose oxi‑
dation) [11–17]. If these energies can be efficiently col‑
lected and stored, it will be possible to meet the energy 
requirements of many low‑power electronic products, or 
even personal electronics [18, 19].

Triboelectric technology has been proved to be an effec‑
tive means to harvest these ubiquitous energies and convert 
them into electricity, which can be used in health surveil‑
lance [19–23], cell/nerve stimulation [24–26], or even power 
a commercial cardiac pacemaker [27]. These achievements 
bring new insights for scientific researchers and doctors 
to diagnose and treat related diseases. When a triboelec‑
tric device was implanted in body, it collected energy from 
respiration [28], heart beating [27], blood flow [29], and 
so on. Whereas the biochemical energy (e.g., glucose) in 
body fluid around the device slipped away, if this energy can 
be simultaneously harvested, the converted electric energy 
will be augmented, and this step will likely be sufficient for 
powering microdevices in clinic, for instance, implantable 
wireless glucose sensor for diabetic patient [30], temperature 
monitor after surgery [31], and pressure sensor for arterial 
blockage [32]. Considering glucose in tissue fluid or blood, 
it is a feasible conception to use these biomolecules for glu‑
cose fuel cell (GFC) and generating electric energy by redox 
reaction [33].

In this study, we designed a hybrid energy‑harvesting 
system (HEHS) by integrating a triboelectric nanogenera‑
tor (TENG) and GFC to simultaneously harvest the bio‑
mechanical energy and biochemical energy. The HEHS 
was integrated on a flexible polyethylene terephthalate 
(PET) substrate. TENG and GFC were connected in paral‑
lel, and their electric outputs were superimposed success‑
fully, which proved its feasibility to harvest the mechanical 

energy and biochemical energy simultaneously. Compared 
with any single unit, the HEHS has a faster charging rate 
to a commercial capacitor, which proved its higher effi‑
ciency as a hybrid system to harvest energy. Then the 
harvested energy can power a commercial calculator and 
a green light‑emitting dioxide (LED) pattern. This study 
provided a feasible method to harvest energy from multiple 
sources simultaneously, and it has a great potential as a 
power source to drive micro‑/nanodevices to achieve some 
specific functions.

2  Experimental Section

2.1  Fabrication of TENG

Aluminum (Al) foil was fixed on a PET substrate by silver 
paste and acted as one friction layer. The Al foil was pol‑
ished using sandpaper to create microstructures [34]. Kapton 
film with copper back electrode was selected as another fric‑
tion layer. Precut polydimethylsiloxane (PDMS) (thickness, 
2 mm) was used as spacer to make the friction layers keep a 
gap [4, 16]. One piece of titanium (Ti) foil was used as the 
backbone to ensure the fast recovery of friction layers after 
contact [29]. To protect TENG from water infiltration, it was 
encapsulated with polytetrafluoroethylene (PTFE) film and 
PDMS in sequence.

2.2  Fabrication of Glucose Fuel Cell (GFC)

Bacterial cellulose (BC) membranes were purchased from 
Hainan Yida Food Co. Ltd., which were used as the matrix 
scaffold of multiwalled carbon nanotubes (MWCNTs). 
These BC membranes were pretreated in sodium hydroxide 
(NaOH) solution (0.1 mol L−1) at 90 °C for 1 h and then 
rinsed repeatedly with deionized (DI) water until neutral.

The dispersion of MWCNTs was prepared by dispersing 
MWCNTs (0.4 g) and sodium dodecylbenzene sulfonate 
(SDBS) (4 g) in DI water (400 mL) with ultrasonication 
(100 W, 60 Hz) for 2 hours [35–39]. The dispersion solution 
was centrifuged at 6000 rpm for 10 min. MWCNTs were 
inserted into BC membrane (BC/MWCNTs) by infiltrating 
the as‑prepared supernatant to improve the conductivity of 
BC membranes.  H2PtCl6·6H2O (1 g) was dissolved in DI 
water to prepare chloroplatinic acid solution. The samples 



Nano‑Micro Lett.           (2020) 12:50  Page 3 of 12    50 

1 3

should be protected from light. Palladium chloride was dis‑
solved in 20 mM HCl solution (25 mL) at 60 °C for 1 h. BC/
MWCNTs was soaked in the mixed solution of chloropla‑
tinic acid and chloropalladium acid (volume ratio, 1:1) for 
1 h and then put it in sodium borohydride solution (0.1 M) 
at 90 °C with stirring for 1 h to obtain BC/MWCNTs/Pt–Pd 
film; it was used as the anode film. BC film with MWCNTs 
on both sides served as cathode film.

Gold film with scheduled area was sputtered on polyethyl‑
ene terephthalate (PET) substrate. The BC membrane clings 
to the gold film. A polylactic acid (PLA) fixture fabricated 
by 3D printing was used to fix the electrode film and sup‑
porting substrate. PBS solution was prepared by mixing 
sodium hydrogen phosphate  (Na2HPO4·12H2O) and potas‑
sium phosphate monobasic  (KH2PO4) in DI water. Glucose 
solution (1 g L−1) was added in PBS solution and used as the 
electrolyte of the cathode and anode electrode.

2.3  Integration of GFC and TENG

GFC and TENG were integrated on a transparent and flex‑
ible PET substrate. Au films as cathode and anode for GFC 
were sputtered on both sides of PET. Al foil of TENG and 
Au film of GFC were isolated by a blank region to prevent 
them from conduction. A rectifier and a unilateral diode 
were connected to TENG and GFC, respectively. Then the 
rectified TENG and GFC were connected in parallel. The 
TENG was encapsulated with PTFE and PDMS to ensure 
that the HEHS can work normally in watery environment.

2.4  Material Characterization and Electrical 
Measurement

To confirm the BC/MWCNTs/Pt–Pd has the ability to oxi‑
dize glucose, its electrochemical characteristic was tested 
by electrochemical workstation. BC/MWCNTs/Pt–Pd film 
was tied on a glassy carbon electrode as working electrode. 
Platinum electrode and calomel electrode (SCE) were used 
as counter electrode and reference electrode, respectively 
[40]. The materials’ properties were characterized by scan‑
ning electron microscope (SEM, HITACHI, SU8020) and 
X‑ray diffraction (XRD, PANalytical, X’Pert3 Powder). The 
electrical outputs of TENG and GFC were measured by an 
electrometer (Keithley, 6517B) and a digital oscilloscope 
(Teledyne LeCroy, HDO6104). A commercial capacitor 

(capacity, 10 μF) was used to store energy of TENG, GFC, 
and HEHS, respectively.

3  Results and Discussion

3.1  Conception of Using HEHS for Multiple Energy 
Harvesting

Human body contains many types of energy, such as biome‑
chanical energy, biochemical energy, and thermal energy. If 
these energies were effectively collected, it will be beneficial 
to provide electric energy for self‑powered portable electron‑
ics. Because the thermal energy is difficult to be harvested 
due to the limitation of temperature difference in human 
body, the biomechanical energy and biochemical energy 
became the preferred candidates for energy conversion.

The biomechanical energy can be from external or inter‑
nal body motions, for instance, finger pressing and hand 
flapping. The biochemical energy can be from the glucose 
molecules in body fluid. If a proposed HEHS was implanted 
in a suitable position, it will be feasible for the HEHS to 
simultaneously harvest biomechanical energy and biochemi‑
cal energy from the body motion and surrounding body fluid 
(Fig. 1a). As shown in Fig. 1a, a HEHS was implanted in the 
subcutaneous region, and it was surrounded by body fluid. 
When a finger pressed on the skin, the local pressure brings 
friction materials (Kapton and aluminum) into contact 
[Fig. 1b(i)], equal amount of opposite charges distributed 
on their contact surfaces due to coupling of triboelectrifica‑
tion and electrostatic induction. When the finger gradually 
moves away from the skin, free electrons will migrate from 
copper to aluminum to balance the potential difference until 
the space recovered to the initial state [Fig. 1b(ii) and (iii)]. 
When the finger approaches the skin again, free electrons 
migrate from aluminum to copper until the Kapton fully 
contact with aluminum [Fig. 1b(iv) and (i)]. The repetitively 
press and release lead to periodic electric current output in 
external circuit. And the biomechanical energy was con‑
verted into electric energy by the TENG.

Meanwhile, the body fluid containing glucose molecules 
penetrates into active materials and participates in the redox 
reaction around the anode electrode of GFC (Fig. 1c). The 
lost electrons migrated from anode to cathode and were 
captured by dissolved oxygen in body fluid. This process 
converted the biochemical energy in glucose into electric 
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energy. In the following part, we showed the HEHS design 
and demonstrated the feasibility of using HEHS to harvest 
biomechanical energy and biochemical energy simultane‑
ously in simulated body fluid. The harvested energy was 
used to power a calculator and a green LED pattern.

3.2  Harvesting Mechanical Energy by TENG

The electric performance test of TENG was carried out in 
phosphate‑buffered solution (PBS). The as‑fabricated TENG 
has a vertical contact‑separation mode. Kapton film and alu‑
minum (Al) foil acted as friction layers. Thin copper layer 
was deposited on Kapton film as back electrode. The whole 
TENG device was packaged by polytetrafluoroethylene 
and polydimethylsiloxane (PTFE & PDMS) (Fig. 2a). The 
surface of Kapton film was treated by inductively coupled 
plasma‑reactive ion etching (ICP) to form micropillars. The 
surface of Al foil was polished by sandpaper to form parallel 
microchannels. The microstructures on friction layers con‑
tribute to increasing the electric output of TENG (Fig. 2b).

As shown in Fig. 2c, the TENG can output an open‑circuit 
voltage of about 22 V under the stimulus of a linear motor, 
and after rectification, the voltage value kept stable. The 

short‑circuit current was about 0.24 μA, and after rectifica‑
tion, the current value has no decay (Fig. 2d). The effec‑
tive output power of the TENG was measured by recording 
the voltage and current values with different load resist‑
ances ranging from 0.1 MΩ to 5 GΩ (Fig. 2e). The cur‑
rent decreased with increasing load resistance because of 
the Ohmic loss, while the voltage showed an increasing 
trend. A maximum power density of about 3.3 mW  cm−2 
was obtained with a load resistance of about 70 MΩ (Fig. 
S1). The transferred charge was about 12 nC without rec‑
tification in each cycle (upper, Fig. 2f). After rectification, 
the transferred charge was about 1 μC within 18 s (lower, 
Fig. 2f). These results indicated that the as‑fabricated TENG 
can efficiently harvest biomechanical energy and convert it 
into electric energy.

3.3  Preparation and Micromorphology of GFC

To harvest the biochemical energy, redox reaction‑based 
GFC was fabricated to convert the biochemical energy from 
glucose into electric energy. Bacterial cellulose (BC) mem‑
brane was selected as the supporting matrix scaffold due 
to its good biocompatibility and porous structure, which is 
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in favor of biological application and high specific area for 
redox reaction. Figure 3a shows two types of BC membranes 
with MWCNTs prepared as the cathode and anode films, 
respectively. Firstly, MWCNTs were filtrated into both sides 
of a BC membrane, and it was named MWCNTs/BC/MWC‑
NTs and used as the cathode film of GFC. Secondly, after 
one side of BC membrane was filtrated with MWCNTs, it 
was soaked in  H2PtCl6–H2PdCl6 solution and then reduced 
by  NaBH4 to obtain the catalyst Pt–Pd nanoparticles (NPs), 
the product was named Pt–Pd/MWCNTs/BC and used as the 
anode film of GFC (Figs. S2 and S3).

Before MWCNTs filtration, the original BC membrane 
has a porous structure, the filamentary BC interweaved with 

each other (Fig. 3b), and their edges were clear (Fig. 3e). 
This porous structure provided enough space for MWCNTs 
filling. After the filtration, BC membrane was filled with 
MWCNTs (Fig. 3c). MWCNTs in BC connected with each 
other (Fig. 3f), which ensured its conduction of electrons 
when redox reaction occurred. With the in situ reduction 
of Pt–Pd, many particles with various sizes appeared on 
the surface of MWCNTs/BC membrane, which indicated 
that the Pt–Pd catalyst was loaded successfully (Fig. 3d, g). 
XRD peaks of Pt–Pd of the as‑prepared sample also verified 
its existence in MWCNTs/BC membrane (Fig. S4), which 
ensured the realization of redox reaction in the following 
experiment.
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Fig. 3  a Preparation process of cathode and anode films of GFC. b, e Surface micromorphology of original BC membrane. c, f Surface mor‑
phology of MWCNTs filtrated into BC membrane. d, g Micromorphology of Pt–Pd nanoparticles (NPs) on the surface of MWCNTs/BC film
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3.4  Harvesting Biochemical Energy by GFC

As shown in Fig. 4a, a GFC was assembled layer by layer 
on a flexible PET substrate to harvest the biochemical 

energy from glucose molecules. The components include 
anode, gold (Au) electrode, PET substrate, cathode, and 
fixture. When the GFC was immersed into glucose solu‑
tion, glucose molecules will be oxidized to gluconic acid 
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at anode. Electrons flowed from anode to the cathode 
through the external circuit and generated electric current. 
The dissolved oxygen around cathode accepted electrons 
and combined with hydrogen ions to form water molecules 
(Fig. 4b). The redox reaction equations are as follows [41, 
42]:

The cyclic voltammetry (CV) test of Pt–Pd/MWCNTs/BC 
was performed in PBS/glucose solution to prove the redox 
potential of GFC (Fig. S5c). When the glucose is absent, 
the CV curve has typical peaks for the hydrogen adsorption/
desorption between − 0.6 and − 0.2 V versus SCE reference 
electrode. After adding the glucose in PBS, CV curve shows 
increased faradaic currents due to glucose oxidation in three 
regions. In anodic positive scan, glucose oxidation occurred 
in two regions, including the hydrogen desorption region 
from ‑0.6 to ‑0.4 V and the double‑layer region from − 0.4 
to 0.2 V. The third region for glucose oxidation occurred 
in the cathodic negative scan, i.e., hydrogen adsorption 
region from − 0.6 to 0.1 V [43]. These results indicated the 
qualified biochemical energy‑harvesting ability of the as‑
fabricated GFC.

To obtain the optimum energy‑harvesting performance, 
the device size and loading time of catalyst for GFC were 
studied. As shown in Fig. 4c, d, the output voltages and 
currents of GFCs with five sizes were discussed, i.e., 1 × 1, 
1.5 × 1.5, 2 × 2, 2.5 × 2.5, and 3 × 3 cm2 (Figs. S6 and S7). 
The output voltage first increased rapidly with device size, 
and then it gets close to stable state after 2 × 2 cm2. This 
variation trend can be ascribed to the constant theoretical 
redox potential difference for glucose and oxygen [43]. 
With the size increase, more glucose molecules partici‑
pate in the reaction, and the output voltage increased with 
the size and gradually approach theoretical value and then 
became stable. Because the internal resistance of GFC 
itself also shared the voltage, so its output voltage was 
slightly lower than 1 V. As for the output current, it firstly 
increased to about 6 μA at 2 × 2 cm2 and then decreased 
with the size. This trend can be attributed to the resistance 
variation with size. With increase in size, the effective 
reaction area and transferred electrons also rose, which 
contributes to the increase in output current. Meanwhile, 
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the increased size will also raise the bulk resistance of 
GFC, contact resistance between anode/cathode and Au 
electrode, which will decrease the current. Under the 
combined action, the current showed increasing trend at 
the early stage, then decreased at later stage under the 
combined action. According to these results, the size of 
2 × 2 cm2 was preferred in fabricating GFC.

To endow the GFC with ability of harvesting biochemi‑
cal energy from glucose, Pt–Pd catalyst was loaded on 
MWNCTs/BC for different times. As shown in Fig. 4e, the 
output voltage of GFC firstly increased to about 0.6 V at 
three times of loading, and then it gets close to stable state 
with loading times. The voltage variation trend was simi‑
lar to that shown in Fig. 4c. As for the output current, it 
firstly increased to 10.5 μA at three times of loading, then 
decreased with loading times (Fig. 4f). This decreasing 
trend can be attributed to the excessive loading of catalyst. 
The excessive loading will result in geometrical hindrance 
and self‑poisoning effect, and it can slow the effective 
redox reaction [33, 43, 44]. According to the results, three 
times of loading was preferred in fabricating GFC.

3.5  Integrated HEHS for Multiple Energy Harvesting

As demonstrated above, the as‑fabricated TENG and GFC 
can work individually and harvest mechanical energy and 
biochemical energy. To prove the feasibility of using TENG 
and GFC to harvest multiple energies simultaneously, a 
hybrid energy‑harvesting system (HEHS) consisted of 
TENG and GFC was developed and integrated on a flex‑
ible PET substrate (Fig. 5a). Considering that the voltage of 
TENG (22 V) was much higher than that of GFC (less than 
1 V), and their output currents were similar, and therefore, 
the TENG and GFC were preferentially connected in par‑
allel to enhance the combined output current. The TENG 
was rectified to generate unidirectional current. A unilateral 
diode was used to avoid the reverse charging from TENG 
to GFC (Figs. 5b and S8). As shown in Fig. 5e, the output 
currents of individual TENG and GFC were about 0.3 and 
0.9 μA, respectively. After integrating the TENG and GFC, 
the current curve of TENG appeared on the current curve of 
GFC, and their currents were superimposed to about 1.2 μA 
successfully. The output voltages of individual TENG and 
GFC were 22 and 0.3 V (Fig. 5f), respectively. After inte‑
grating the TENG and GFC, the output voltage of TENG 



Nano‑Micro Lett.           (2020) 12:50  Page 9 of 12    50 

1 3

appeared on the voltage curve of GFC, and the peak voltage 
drop slightly to 21.7 V due to the parallel connection circuit 
(Fig. 5f). If the TENG was not rectified, only half number 
of peak voltages was retained after integrating the TENG 
and GFC. Similarly, the peak currents were also reduced 
by half due to reverse charging between TENG and GFC 
(Figs. 5g and S9).

When use the rectified TENG, GFC and their hybrid 
device (i.e., HEHS) to charge a capacitor, respectively, the 
HEHS has an obviously faster charging rate than TENG and 
GFC, it can obtain a higher voltage (0.37 V) than that (0. 

24 V) of TENG and GFC within 90 s (Fig. 5h). To dem‑
onstrate the feasibility of using the HEHS to power port‑
able electronics, a capacitor was charged to 2.3 (Fig. 5i) 
and 3.6 V (Fig. 5j), respectively, and it can provide energy 
for a calculator (Fig. 5c) and light up a green BINN pat‑
tern (Fig. 5d) immediately. Additionally, from the enlarged 
view in Fig. 5i and j, the charged voltage can quickly reach 
to about 0.3 V due to the existence of direct‑current GFC, 
which can save about 20 s from the gray extension line.
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4  Conclusions

In summary, the fabrication parameters of TENG and GFC 
were studied in detail. Three times of Pt–Pd loading and 
2 × 2 cm2 were selected as the preferential parameters for 
GFC fabrication. The developed TENG and GFC can effec‑
tively harvest biomechanical energy and biochemical energy, 
respectively. The HEHS can simultaneously harvest biome‑
chanical energy and biochemical energy in simulated body 
fluid (i.e., PBC/glucose solution). Before integrating the 
HEHS, TENG and GFC should be rectified to protect the 
circuit from reverse charging and enhance the overall energy 
conversion ability. After integrating the HEHS in parallel, 
the output currents and voltages of TENG and GFC were 
superimposed successfully. When used the HEHS to convert 
the mechanical energy and biochemical energy into electric 
energy and stored in a capacitor, a portable calculator and 
a green LED pattern were powered successfully. Based on 
these results, this study provided a feasible method to har‑
vest energy from multiple sources, and it is reasonable to 
think that the HEHS can be a promising candidate when 
implanted into the body to harvest biomechanical and bio‑
chemical energy simultaneously. The HEHS has a potential 
as a power source to drive low‑power electronic devices to 
achieve some specific functions.
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