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HIGHLIGHTS

• Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.

• Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.

• The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg−1 at power densities of 200 and 10,000 W kg−1, 
respectively, holding promise for practical applications.

ABSTRACT Conversion-type anode materials with a 
high charge storage capability generally suffer from large 
volume expansion, poor electron conductivity, and slug-
gish metal ion transport kinetics. The electrode material 
described in this paper, namely cobalt sulphide nanopar-
ticles encapsulated in carbon cages  (Co9S8@NC), can cir-
cumvent these problems. This electrode material exhibited 
a reversible sodium-ion storage capacity of 705 mAh g−1 
at 100 mA g−1 with an extraordinary rate capability and 
good cycling stability. Mechanistic study using the in situ 
transmission electron microscope technique revealed that 
the volumetric expansion of the  Co9S8 nanoparticles is 
buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped 
nitrogen significantly enhances the electron conductivity of the  Co9S8@NC electrode material and provides doping-induced active sites 
to accommodate sodium ions. By integrating the  Co9S8@NC as negative electrode with a cellulose-derived porous hard carbon/graphene 
oxide composite as positive electrode and 1 M  NaPF6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy 
densities of 101.4 and 45.8 Wh kg−1 at power densities of 200 and 10,000 W kg−1, respectively.
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1 Introduction

Sodium-ion batteries (NIBs) have resurfaced as the most 
promising energy storage technology for large-scale energy 
storage applications. With a wide spectrum of cathode mate-
rials suitable for NIBs, it has been of a great challenge for 
anode materials to compete with the current lithium-ion 
battery technology. Transition metal chalcogenides (TMCs) 
with high charge storage capacity, suitable redox voltage, 
and good electron conductivity have advantages compared to 
their oxide counterparts [1–3]. Among various TMCs, cobalt 
sulphides hold a great potential as anode materials for high-
performance NIBs due to their high theoretical capacities, 
relatively low voltage plateau, and low cost [4–6]. Unfortu-
nately, this family of materials suffers from sluggish kinetics 
of sodium-ion transport and large volume changes during 
charge/discharge, causing problems such as severe pulverisa-
tion and unstable solid electrolyte interphase (SEI) films [7].

Strategies have been proposed to address the above issues, 
including optimisation of electrode materials [8]. Nanopar-
ticles (NPs) have been shown to not only improve the reac-
tion kinetics due to shortened charge transport pathway but 
also effectively relieve mechanical strain induced by vol-
ume expansion [9]. However, NPs tend to aggregate during 
charge/discharge, leading to rapid loss in electroactivity. 
Dispersing NPs on carbon substrates has been shown to be 
a good solution to solving the particle aggregation problem 
[10]. Here we demonstrate a strategy for stabilising NPs by 
encapsulating them in carbon cages. Effective confinement 
from carbon shells not only eases the self-aggregation and 
pulverisation but also buffers the volumetric expansion and 
ensures a stable SEI film during sodiation/desodiation [11, 
12]. Moreover, the enhanced contact between carbon layer 
and active components in the core–shell structure provides 
sufficient channels for fast electron/ion transport, thereby 
increasing the electronic conductivity and charge storage 
kinetics of the composite [13]. On the other hand, doping of 
carbon materials with heteroatoms such as nitrogen, sulphur, 
phosphorous, or boron can improve ionic and electronic con-
ductivity [14–16]. Also, doping-induced defects on carbon 
could create localised active sites to accommodate sodium 
ions and favour ion transfer, giving rise to higher sodium 
storage performance [17, 18].

In this work, nitrogen-doped carbon frame was used 
to stabilise  Co9S8 nanocapsules. The obtained electrode 

material (hereafter designated as  Co9S8@NC) was used as 
anode for sodium-ion storage. It delivered a specific capac-
ity as high as 705 mAh g−1 at 100 mA g−1 and exhibited an 
excellent rate performance (613 mAh g−1 at 4000 mA g−1), 
which is among the highest in all reported  Co9S8 electrodes 
for NIBs [4, 5, 19–22]. Insight into sodium storage mecha-
nism in  Co9S8@NC is systematically studied and discussed 
via multiple analytical methods. The synthetic method is 
very versatile and can be easily extended to fabricate other 
TMC-based composites for energy storage.

2  Experimental Section

2.1  Synthesis of  Co9S8@NC Composites

The  Co9S8@NC nanocapsules were synthesised via a 
facile and scalable one-pot route. Typically, a certain 
amount of hydrate cobalt sulphate  (CoSO4·7H2O) and 20 g 
melamine were dissolved in 20 mL deionised water with 
ultrasonication and stirring to obtain a pink suspension at 
room temperature. The suspension was centrifuged and 
collected, followed by being freeze-dried for 48 h. The 
resulting violet powder was annealed in a tube furnace at 
a rate of 5 °C  min−1 to 750 °C and kept for 2 h under the 
nitrogen atmosphere to obtain the  Co9S8@NC samples. 
Melamine was carbonised to form a carbon shell wrap-
ping the  Co9S8 nanocapsules. By varying the mass ratio 
of melamine/cobalt sulphate to be 40:6, 40:9, and 40:12, 
three samples denoted as  Co9S8@NC-6,  Co9S8@NC-9, 
and  Co9S8@NC-12 were obtained. Because melamine con-
tains rich nitrogen, high-content doping of nitrogen in the 
carbon shell occurred. For comparison,  Co9S8 nanoparti-
cles without carbon shell  (Co9S8-NPs) were also prepared.

2.2  Synthesis of  Co9S8 Nanoparticles

As a reference,  Co9S8 nanoparticles were also prepared 
by a modified method as previously reported [23]. Typi-
cally, 5 mmol  CoSO4·7H2O and 5 mmol thiourea were 
dissolved in ethylene glycol (30 mL). The obtained solu-
tion was placed in a Teflon-lined stainless-steel autoclave 
and maintained at 160 °C for 12 h. After cooling down to 
the room temperature, the precipitates were collected and 
freeze-dried for 48 h, then followed by the same annealing 
treatment as the  Co9S8@NC composites.
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2.3  Preparation of Cellulose‑Derived Porous Carbon/
Graphene Oxide Composite

Graphite oxide (GO) was prepared using the modified 
Hummers’ method [24, 25]. The resulting GO was dis-
solved in deionised (DI) water to form GO suspension 
(2 mg mL−1) by ultrasonication in ice bath for 1 h. Then 
0.5 g MC powder and 1.5 g zinc chloride  (ZnCl2) were 
added into 25 mL GO suspension with stirring for 1 h. 
Afterwards, the mixture was freeze-dried for 24 h, fol-
lowed by annealing treatment at 550 °C for 2 h under nitro-
gen flow at a heating rate of 5 °C min−1. The obtained 
sample was washed with hydrogen chloride solution and 
DI water to remove residuals. After drying at 60 °C for 
48 h, the cellulose-derived porous carbon/graphene oxide 
composite was obtained and denoted as CG.

3  Results and Discussion

3.1  Structural and Morphological Characterisation

The powder diffraction (XRD) patterns of the samples are 
shown in Fig. 1a. All major diffraction peaks of samples 
 Co9S8@NC-9 and  Co9S8@NC-12 can be indexed to cubic 
 Co9S8 phase (JCPDS No. 04-006-5681) [26], indicating a 
complete conversion of  CoSO4 to  Co9S8. Also, the  Co9S8@
NC-6 and  Co9S8@NC-9 sample show peaks at 44.2° and 
51.6° corresponding to cubic cobalt (JCPDS No. 04-004-
3107). Previous study has demonstrated that  Co9S8 could 
be partially reduced to metallic cobalt through carbothermal 
reduction during annealing [27]. Therefore, the increase in 
melamine content in the precursor leads to the formation of 
higher amount of cobalt in the product.

The survey X-ray photoelectron spectroscopy (XPS) 
spectrum (Fig. S2) demonstrates the coexistence of Co, 
O, C, N, and S elements in the  Co9S8@NC samples. The 
atomic ratio of each element is listed in Table S1. The XPS 
spectra of  Co9S8@NC-9 were further analysed. In the Co 
2p3/2 region, the peak located at 780.8 and 778.4 eV can be 
assigned to  Co2+ and  Co3+ (Fig. 1b) [28–30]. As shown in 
Fig. 1c, the characteristic peaks of Co-S located at 162.2 (S 
2p3/2) and 163.4 eV (S 2p1/2), further confirming the pres-
ence of  Co9S8. Moreover, binding energies at 168.2 (S 2p3/2) 
and 169.4 eV (S 2p1/2) correspond to C-SOx groups, which 
may due to some  SO4

2− residue on the sample. The typical 

high-resolution spectrum of C 1 s in  Co9S8@NC is presented 
in Fig. 1d, which reveals the presence of C–C (sp2), C–C 
(sp3), C–N=C–O, C=O, and pi–pi* at binding energies of 
284.6, 285.2, 286.2, 287.5, and 289.5 eV, respectively [18]. 
Also, the pi–pi* bond illustrates the existence of graphitic 
carbon in the sample. The nitrogen doping into the carbon 
shell can be verified by the high-resolution N 1 s spectrum 
shown in Fig. 1e, in which peaks of pyridinic N (398.7 eV) 
and pyrrolic N (400.9 eV) can be observed [31, 32]. The 
elemental content of nitrogen species on carbon is as high 
as 13.3% in the  Co9S8@NC-9 sample. Large quantities of 
extrinsic defects can be introduced into carbon framework 
by pyridinic/pyrrolic nitrogen doping, hence favours ion 
transfer, and enhances the interaction property with sodium 
ions [17, 33, 34].

Raman spectra of  Co9S8@NC samples are presented in 
Fig. 1f. The D peak (~ 1360 cm−1) arises from defect-acti-
vated in-plane breathing modes, corresponding to sp3 carbon 
bonding. The G peak (~ 1580 cm−1) is related to in-plane 
optical phonon modes and corresponds to sp2 carbon bond-
ing. The 2D peak (~ 2700 cm−1) arises from a two-phonon 
process that is sensitive to the electronic structure. Raman 
spectra of the  Co9S8@NC samples show ID/IG values of 
~ 1.0, indicating a high degree of defects due to nitrogen dop-
ing [16, 35]. In addition, for the  Co9S8@NC-9 and  Co9S8@
NC-12 samples, the Raman bands below 750 cm−1 are well 
index to  Co9S8 [23]. While in the  Co9S8@NC-6 sample, the 
sharp and strong Raman shifts below 750 cm−1 are attributed 
to Co–Co stretching mode, indicating the presence of a large 
amount of metallic cobalt [36]. The porous structure feature 
of the  Co9S8@NC composites was verified by the nitrogen 
adsorption–desorption measurement, as shown in Fig. S3a. 
The isotherms exhibit typical type-IV characteristics, imply-
ing a rich existence of mesopores in the  Co9S8@NC samples. 
Correspondingly, the Brunauer–Emmett–Teller surface areas 
for  Co9S8@NC-6,  Co9S8@NC-9, and  Co9S8@NC-12 were 
calculated to be 62.3, 42.1, and 19.6 m2 g−1, respectively, 
which are higher than that of  Co9S8-NPs (15.1 m2 g−1). The 
average pore size of the  Co9S8@NC-9 sample (Fig. S3b) 
shows the pore size is primarily distributed in the range of 
2–4 nm. The presence of both micropores and mesopores 
can form a multichannel structure that facilitates the electro-
lyte penetration and electron/ion diffusion [37].

Field emission scanning electron microscopy (FESEM) 
images of the  Co9S8@NC composites are shown in Fig. S4. 
A panoramic view of the  Co9S8@NC-6 and  Co9S8@NC-9 
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shows the high yield of quasi-spherical NPs with a uniform 
size of about 100 nm, whereas the  Co9S8@NC-12 sample 
exhibits irregular shapes. The transmission electron micros-
copy (TEM) images (Figs. 2a, b and S5) further demonstrate 
that the  Co9S8@NC-9 exhibits the most intact core–shell struc-
ture with  Co9S8 core NPs encapsulated and linked together 
by carbon sheets. A close observation (Fig. 2c) indicates the 
carbon shell consists of ~ 10–20 carbon layers that have a well-
defined graphite crystalline structure. High-resolution TEM 
(HRTEM) image (Fig. 2d) evidences the good crystallisation 
of  Co9S8 core. The continuous lattice fringe of ~ 0.227 nm 
corresponds to the (331) facet of cubic  Co9S8, which is in 
line with the selected area electron diffraction (SAED) pat-
tern results. Moreover, a small amount of ultrafine Co NPs 
(marked in circles) with ~ 2–5 nm in size can be observed, as 
shown in Fig. 2e, the presence of which has been demonstrated 
to increase the electronic conductivity of the composite by 
creating heterointerfaces and promote the formation of robust 
graphitic carbon [4, 38]. In addition, TEM elemental mapping 
analysis confirms the even distribution of Co, C, S, and N as 
the principal elemental components throughout the  Co9S8@
NC-9 sample, consistent with the full survey XPS spectrum 

result above. Such structure design offers multiple merits for 
achieving excellent sodium-ion storage. The direct, intimate 
contact between the core  Co9S8 NPs and thin carbon shells 
provides efficient electron/ion transport media, which contrib-
ute to the excellent rate capability. The space-confined effect 
arising from the carbon capsules can impede the growth and 
aggregation of the core  Co9S8 NPs while buffering the vol-
ume change upon the electrochemical reaction, which ensures 
a stable SEI film and alleviates the capacity fading against 
extended cycling.

3.2  Sodium‑Ion Storage Performance in Half Cells

To evaluate the  Co9S8@NC as anode for NIBs, the electro-
chemical performance was tested in coin-type half cells. Fig-
ures 3a and S6a, b show the CV curves of  Co9S8@NC elec-
trodes for the initial three cycles. In the CV profile of  Co9S8@
NC-9, the initial reduction process shows peaks between 0.15 
and 1.0 V, which corresponds to the sodiation of both carbon 
and  Co9S8, along with the decomposition of electrolyte and 
the formation of the SEI layer. In particular, the peak located 
at 0.9 V corresponds to the interaction of  Co9S8 with sodium 
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ions to form a  Na2−xCo9S8 phase, while the peak at 0.55 V is 
related to  Na2-xCo9S8 transforming to Co and  Na2S via con-
version reaction [4], which will be illustrated later by TEM 
and in situ XRD results. In the subsequent cycles, the new 
cathodic peak at 0.95 evolved instead, which are related to the 
reaction between  Na2−xCo9S8 and sodium ions. During the 
anodic scan, the oxidation peak located at 1.67 V is due to the 
desodiation process. Moreover, there are a pair of reversible 
peaks located at ~ 0.1 V for both cathodic and anodic scans, 
which are due to the intercalation/deintercalation of solvated 
sodium ions into/from nano-voids formed by the disordered 
carbon nanosheets [39].

Accordingly, the galvanostatic discharge–charge profiles 
of  Co9S8@NC electrodes are shown in Figs. 3b and S6c, d. 
The long discharge plateau in the first cycle is related to the 

sodiation process and SEI formation, accordant with the CV 
profiles. The initial discharge/charge capacities of  Co9S8@
NC-6,  Co9S8@NC-9, and  Co9S8@NC-12 electrodes were 
568/430, 1034/709, and 807/601 mAh g−1 at 100 mA g−1, 
respectively. The first irreversible capacity is attributed to the 
partial reductive decomposition of the electrolyte and the SEI 
formation. The overlapping of the discharge–charge profiles 
as well as the CV curves after the first cycle of the  Co9S8@
NC-9 is an indication of the highly reversible reaction of the 
electrode materials with sodium ions. In addition, it should 
be noticed that excessive carbon content in the  Co9S8@NC-6 
sample led to inferior performance, which might stem from the 
low capacity of carbon.

Impressively, the  Co9S8@NC-9 electrode shows an extraor-
dinary rate performance by achieving capacities of 705, 

Fig. 2  Morphology and structure of the as-prepared  Co9S8@NC-9. a–c TEM images with different magnifications. d, e HRTEM images pre-
senting the lattice fringes. f SAED pattern. g Elemental mapping images showing the distribution of C, Co, S, and N elements
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701, 675, 652, 645, 629, and 613 mAh  g−1 at current densi-
ties of 100, 200, 400, 800, 1000, 2000, and 4000 mA g−1, 
respectively, as shown in Fig. 3c and d, which are better than 
 Co9S8@NC-6,  Co9S8@NC-12, and  Co9S8-NP electrodes 
(Figs. 3c and S6e, f). Importantly, after successive 43 cycles 
at different current densities, the capacity of  Co9S8@NC-9 

was retained to 645 mAh g−1 when the current density was 
changed to 1000 mA g−1. The excellent rate performance of 
 Co9S8@NC-9 was attributed to the fast charge transport kinet-
ics throughout the electrode, likely due to both material integ-
rity against the volumetric expansion as well as the high elec-
tron conductivity from the rational-designed structure with 
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multi-functional electrochemical active components. Moreo-
ver, the cycling performance of the  Co9S8@NC-6,  Co9S8@
NC-9,  Co9S8@NC-12, and  Co9S8-NP electrodes were investi-
gated, as shown in Fig. 3e. The  Co9S8@NC-9 electrode shows 
no virtually capacity fading at a high rate of 1000 mA g−1 
over 400 cycles with a high Coulombic efficiency of ~ 99.8%, 
indicating a high reversible reaction with sodium ions and 
the structural stability of the electrode material. The retained 
capacity of  Co9S8@NC-6,  Co9S8@NC-9,  Co9S8@NC-12, and 
 Co9S8-NP electrodes after 500 cycles were 556, 458, 374, 
and 331 mAh g−1, corresponding to the capacity retention of 
82, 78, 81, and 69%, respectively. It is noted that the  Co9S8@
NC electrodes exhibit better cycling performance and rate 
capability than that of the  Co9S8-NP electrode, which could 
be attributed to the introduction of carbon encapsulation as 
well as the nitrogen doping. It can also be concluded that the 
 Co9S8@NC-9 electrode with an intact core–shell structure, 
hierarchical pores on the carbon layers and a relatively large 

surface area is the optimised choice in this work by provid-
ing high capacity, excellent rate capability and good stability 
against long-term cycling.

3.3  Sodium‑Driven Structural and Compositional 
Changes

To understand the structural merits of the  Co9S8@NC-9 associ-
ated with this fast and highly stable reaction, in situ and ex situ 
TEM techniques were performed to optically probe the com-
position and structure of the  Co9S8@NC-9 electrode during 
electrochemical testing. The volume changes of the  Co9S8@
NC-9 due to sodiation/desodiation were captured of the initial, 
sodiated and desodiated stages, shown in Fig. 4a–c. In pristine 
electrode, a core–shell structure with a hollow interior between 
the  Co9S8 core and the carbon shell (in white circles, Fig. 4a) 
can be observed. During the consecutive sodiation, the interior 

Fig. 4  a-c In situ TEM investigation of structural changes of the  Co9S8@NC electrode during varied sodiation depths. SAED patterns the 
 Co9S8@NC electrode at d sodiated to 0.01 V and e desodiated to 2.5 V illustrating the compositional changes. f HRTEM images of  Co9S8@NC 
electrode after long-term cycling after 400 cycles
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voids were gradually filled by the expanded  Co9S8 core, clearly 
illustrating that the  Co9S8 electrode material expanded upon 
sodiation and ultimately confined by the carbon shells. To 
measure the volume expansion, two core  Co9S8 NPs with 
diameters of ≈ 50 nm in width and ≈ 66 nm in length, and 
≈ 35 nm in width and ≈ 36 nm in length, respectively, were 
selected as indicated by the prominent markers and arrows. 
After sodiation, the two positioning arrows placed at the mark-
ers expanded to ≈ 58 and 72 nm for the large NP and to ≈ 38 
and 37 nm for the small NP, respectively, giving a volume 
expansion of ≈ 46 and 21%, respectively. These values are 
much smaller than the observed volume expansion in a previ-
ous study, i.e., 120.8% expansion of  Co9S8 upon sodiation [7], 
due to the confinement effect from the graphitic carbon layers. 
Moreover, the sodiated  Co9S8@NC-9 presented neither frac-
ture of carbon layers nor degradation of  Co9S8 NPs, indicating 
the successful confinement of  Co9S8 NPs by the mechanically 
robust carbon layers. Figure S7 shows ex situ HRTEM image 
of the sodiated electrode, displaying plenty of nanograins of 
about 5–10 nm in size. The SAED pattern of the sodiated 
region (Fig. 4d) confirms the formation of  Na2S and Co as 
conversion products. After desodiation, the volume of  Co9S8 
NPs returned to a slight expansion of 19 and 15%, respectively. 
The SAED pattern demonstrates that the conversion products 
of Co and  Na2S returned to  Co9S8 with tiny residues, as shown 
in Fig. 4e. Moreover, Figs. 4f and S8 show HRTEM images of 
the long-cycled  Co9S8@NC-9 electrode, verifying that  Co9S8 
NPs were still restricted by carbon shells and carbon layers 
were well preserved after long-term cycling. The low volume 
variation, as well as the excellent structural stability of the 
 Co9S8@NC-9 electrode, provides solid evidence for its excel-
lent cycling performance in real batteries.

The sodium storage mechanism of the  Co9S8@NC-9 elec-
trode was further confirmed by means of operando XRD 
at various sodiated and desodiated stages of the first cycle 
(Fig. 5a). The corresponding galvanostatic discharge–charge 
profile at a current density of 20 mA g−1 is shown in Fig. 5b. 
During the first discharging, the (311) reflection of  Co9S8 
shifted gradually towards a higher 2θ degree (smaller 
d-spacing), which is likely due to the reinforced electrostatic 
attraction between the inserted sodium ions and  Co9S8 lattice 
[40]. Subsequently, the (311) peak weakened and eventu-
ally vanished after 0.6 V, indicating the ongoing structural 
transformation from  NaxCo9S8 to Co and  Na2S. Due to the 
small nanocrystal size (~ 2–5 nm shown in TEM images) of 

the conversion products, the reflections of the newly formed 
 Na2S and Co could be broad and become part of the back-
ground of the XRD patterns. Meanwhile, a gradual shift of 
the Co (111) reflection towards a higher angle is observed, 
indicating a slight lattice contraction during the sodiation 
process. After sodium ions retrieved from the electrode, the 
Co (111) peak is fully recovered to its pristine state. The 
reversible interaction of  Co9S8 with sodium ions is benefit-
ing from the well-retained structure that restrains the loss of 
active components during conversion reaction.

3.4  Electrochemical Performance in a Sodium‑Ion 
Capacitor

To demonstrate the feasibility of using  Co9S8@NC-9 for 
high-power energy storage applications, we fabricated a 
Swagelok-type full cell sodium-ion capacitor (NIC) using 
the pre-sodiated  Co9S8@NC-9 as the negative electrode, 
paired with the cellulose-derived porous carbon/graphene 
oxide composites (CG) as the ion adsorption/desorption pos-
itive electrode. The structure characterisation of the CG pos-
itive electrode is shown in Fig. S9. The CV test of  Co9S8@
NC-9 and CG electrodes at various scan rates was performed 
in sodium half cells, as shown in Fig. S10. When assembled 
for a NIC full cell, the CV curve of the  Co9S8@NC-9//CG 
NIC exhibits a typical capacitive charge storage behaviour, 
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as shown in Fig. 6a, indicating that  Co9S8@NC-9 electrode 
could be a suitable anode for NICs. Figure 6b shows the 
galvanostatic charge–discharge profiles of the  Co9S8@NC//
CG NIC at various current densities from 0.1 to 5 A g−1. 
The nearly linear profiles at various current rates are indic-
ative of the fast charge storage kinetics. As shown in the 
Ragone plots of NIC full cells in Fig. 6d, the as-assembled 
NIC delivered a superior energy density of 101.4 Wh kg−1 
at a power density of ~ 200 W kg−1 and maintained an 
energy density of 45.8 Wh kg−1 at a high power density 
of ~ 10,000 W kg−1, demonstrating an extraordinary high 
rate characteristic. When compared with various recently 
reported high-performance NICs [41–44], the  Co9S8@
NC-9//CG NIC device shows superior high energy and high 
power performance. Moreover, the NIC shows a high capac-
ity retention of 93% and high Coulombic efficiency of about 
99.9% over 1000 cycles at 1 A g−1 (Fig. 6e), manifesting the 
advantages of hybrid devices with both highly reversible 
sodium-ion storage capability and good cycling stability. 
The above results indicate that the as-designed  Co9S8@NC 

electrode with a unique structure would open the avenue to 
advanced high-performance NICs.

4  Conclusions

Herein, we report a high electrochemical performance com-
posite anode with cobalt sulphide nanoparticles encapsu-
lated by a spherical carbon shell with nitrogen doping for 
sodium-ion storage. The high conductivity of carbon and the 
core–shell-like structure of the electrode material contributed 
to the enhancement in the electrochemical properties of the 
composite electrode in a synergistic manner. In-depth investi-
gation using in situ TEM confirmed the effect of carbon buff-
ering the volume change. Further, the carbon shell was well 
preserved after repeated cycling. High capacity and shelf-life 
along with scalability make the present material attractive as 
next-generation sodium-ion battery anode material. This work 
could be translated to other transition metal chalcogenides 
using such material design to realise inexpensive and durable 
electrode materials for practical application in batteries.
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