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HIGHLIGHTS

• The current approaches of cancer immunotherapy were summarized.

• The prospects in combination of chemotherapy and immunotherapy were discussed.

• The recent progress of nano-based drug delivery systems applied for cancer chemoimmunotherapy was further categorized and 
reviewed.

.

ABSTRACT Although notable progress has been made on novel 
cancer treatments, the overall survival rate and therapeutic effects are 
still unsatisfactory for cancer patients. Chemoimmunotherapy, com-
bining chemotherapeutics and immunotherapeutic drugs, has emerged 
as a promising approach for cancer treatment, with the advantages of 
cooperating two kinds of treatment mechanism, reducing the dosage 
of the drug and enhancing therapeutic effect. Moreover, nano-based 
drug delivery system (NDDS) was applied to encapsulate chemothera-
peutic agents and exhibited outstanding properties such as targeted 
delivery, tumor microenvironment response and site-specific release. 
Several nanocarriers have been approved in clinical cancer chemo-
therapy and showed significant improvement in therapeutic efficiency 
compared with traditional formulations, such as liposomes  (Doxil®, 
 Lipusu®), nanoparticles  (Abraxane®) and micelles (Genexol-PM®). 
The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance 
the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of 
cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were 
further reviewed.

KEYWORDS Cancer therapy; Chemotherapy; Immunotherapy; Chemoimmunotherapy; Nano-based drug delivery system

Liposomes

Polym
er

 m
icelles

De
nd

rim
erNanogels

Bi
om

im
et

ic
NP

s

     NDDS

Metallic/
inorganic

NPs

Au NPs

Fe NPsCu NPs

   ISSN 2311-6706
e-ISSN 2150-5551

      CN 31-2103/TB

REVIEW

Cite as
Nano-Micro Lett. 
         (2020) 12:142 

Received: 26 April 2020 
Accepted: 11 June 2020 
© The Author(s) 2020

https://doi.org/10.1007/s40820-020-00482-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-020-00482-6&domain=pdf


 Nano-Micro Lett.          (2020) 12:142   142  Page 2 of 24

https://doi.org/10.1007/s40820-020-00482-6© The authors

1 Introduction

Cancer is still the main cause of death for patients worldwide 
with increasing incidence [1, 2], and the research into can-
cer treatment is under the spotlight. Surgery, radiotherapy, 
chemotherapy and immunotherapy, as well as those combi-
national regimens are now the main clinical strategies [3]. 
Among those, immunotherapy is now considered as the 
potentially powerful approach to overcome the cancer due 
to the completely different way for cancer treatment, which 
acts by modulating the systemic immune system rather than 
focusing on the tumor itself [4–7]. Since the first immune 
checkpoints blockade agent ipilimumab approved by the 
US Food and Drug Administration (FDA) in 2011, cancer 
immunotherapy has come of age and shown great clinical 
success [8]. Till now, additional six immune checkpoints 
blockade agents  (Keytruda®,  Opdivo®  Tecentriq®,  Imfinzi®, 
 Bavencio® and  Libtayo®) have been approved by FDA, and 
many other forceful immunotherapy drugs have been in 
clinical trials [9–12]. Nevertheless, immunotherapy has met 
great challenges in some tumor types or patients in clinical 
[13, 14], including drug resistance of immune checkpoints 
inhibitors, weak immunogenicity of therapeutic vaccines, 
significant immune-related adverse events (iRAE), off-target 
side effects [15] and so on.

Chemotherapy is the vital weapon of cancer therapy [16]. 
Chemotherapy drugs have long been considered to induce 
immune suppressive; however, massive preclinical studies 
proved that chemotherapy could offer additional benefits to 
immunotherapy, even some cytotoxic drugs could trigger 
antitumor immunity [17], such as cyclin-dependent kinases 
4 and 6 inhibitor [18, 19]. Chemoimmunotherapy, the com-
bination of chemotherapy and immunotherapy, provides 
a superior synergistic effect for enhancing antitumor effi-
ciency. Firstly, chemotherapy drugs kill tumor cells directly, 
while immunotherapy reactivates immune response to kill 
cancer cells. Besides, the effective time was complementary, 
for which chemotherapy drugs have quick action but short 
action time, while immunotherapy could produce a strong 
and long-lasting antitumor effect. Additionally, immuno-
therapy could overcome the deficiencies on chemotherapy 
such as killing chemotherapeutical-resistant cells and cancer 
stem cells [13, 16]. Current data suggested that chemoim-
munotherapy would bring incomparable prospects for opti-
mizing the clinical prognosis of patients [20]. For example, 

the combination of carboplatin or cisplatin, pemetrexed with 
pembrolizumab, has been approved by FDA for the first-line 
treatment of non-small cell lung cancer (NSCLC).

To ensure optimal synergistic antitumor efficacy, some 
issues should be concerned, including distinct pharmacoki-
netics and in vivo distribution of both agents, insufficient 
tumor specificity and tumor accumulation, unascertainable 
drug ratios at tumor tissues and serious systemic side effects 
[21, 22]. Nano-based drug delivery system (NDDS) could 
improve the in vivo pharmacokinetics behaviors, increase the 
stability of drugs, realize the targeted delivery and controlled 
release of drugs, thus holding great promise for chemoim-
munotherapy [23]. Moreover, recent studies demonstrated 
that nanoparticles (NPs) could re-model immunosuppres-
sive tumor microenvironment (TME) [24]. Therefore, NDDS 
applied to chemoimmunotherapy is nowadays the hotspot in 
cancer treatment. Herein, the current approaches of cancer 
immunotherapy as well as chemoimmunotherapy were dis-
cussed. Next, the current applications of NDDS in chemoim-
munotherapy were summarized.

2  Cancer Immunotherapy

Cancer immunotherapy has rapidly developed as a promising 
strategy for cancer treatment. Cancer immunity consists of 
several key steps, which is so-called cancer-immunity cycle, 
including release of cancer cell antigens, cancer antigens 
presentation by antigen-presenting cells (APCs), priming 
and activation of T cells, trafficking and infiltration of T cells 
to tumors and finally the recognition and killing of tumor 
cells by cytotoxic T cells (Fig. 1) [25]. It is theoretically 
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Fig. 1  Scheme illustration of the cancer-immunity cycle. Reproduced 
with permission from Ref. [25]. Copyright 2013 Elsevier
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possible that each step among them might be the potential 
therapeutic target with various methods. Aiming to these 
targets, current approaches to cancer immunotherapy mainly 
include therapeutic antibodies, cancer vaccines, adoptive 
cell therapy and cytokine therapy [26].

2.1  Therapeutic Antibodies

At present, dozens of therapeutic antibodies, such as bren-
tuximab vedotin  (Adcetris®) and ibritumomab tiuxetan 
 (Zevalin®) [27], have been approved by FDA for the treat-
ment of various cancers, and some other therapeutic mono-
clonal antibodies (mAbs) were in clinical trials [28]. The 
therapeutic antibodies approved by FDA and the National 
Medical Products Administration (NMPA) for cancer immu-
notherapy are summarized in Table 1.

Notably, immune checkpoint therapy has brought sig-
nificant clinical advances against cancer [29]. Immune 
checkpoints are vital for maintaining self-tolerance, regu-
lating the duration and magnitude of immune response 
for immune system. By blocking immune checkpoints, 
immune checkpoint therapy can reactivate immune cells 
and enhance the killing ability of immune cells to can-
cer cells. Up to now, seven immune checkpoint agents 
have been approved by FDA, which are expected to be 

approved for various cancers in the future [30]. Ipili-
mumab  (Yervoy®) is the first immune checkpoint agent, 
approved for the treatment of melanoma, which acts by 
blocking the cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4) and re-activating T cells. In stage IV mela-
noma patients, the mortality was reduced to 34% after 
treatment with ipilimumab plus dacarbazine, compared 
with dacarbazine plus placebo [31]. Besides, programmed 
death 1 (PD-1)/programmed death ligand 1 (PD-L1) anti-
body is another main category in immunotherapy, which 
could reactivate T cells by blocking the binding of PD-1 
to PD-L1 and thus kill tumor cell indirectly. Nivolumab 
 (Opdivo®), pembrolizumab  (Keytruda®) and cemipli-
mab  (Libtayo®) are PD-1 antibodies for the treatment 
of advanced melanoma [32], metastatic cutaneous squa-
mous cell carcinoma (CSCC) [33], respectively. While 
on the other hand, atezolizumab  (Tecentriq®), avelumab 
 (Bavencio®) and durvalumab  (Imfinzi®) are the PD-L1 
blocking agents approved for the treatment of advanced 
or metastatic urothelial carcinoma, Merkel cell carcinoma 
(mMCC) [34] and urothelial carcinoma [35], respectively. 
Additionally, there are also other immune checkpoints as 
the potential targets in immune checkpoint therapy, such 
as T cell immunoglobulin and mucin-domain contain-
ing-3 (TIM-3), indoleamine-pyrrole 2,3-dioxygenase-1 

Table 1  Summary of therapeutic antibodies approved for cancer immunotherapy

Mechanism Target Drug Type of cancer Time to 
approved

Blockade of 
immune 
checkpoints

CTLA-4 Ipilimumab Unresectable or metastatic melanoma 2011
PD-1 Nivolumab Classic Hodgkin’s lymphoma, Melanoma, non-small cell lung cancer and renal cell 

carcinoma
2014

PD-1 Pembrolizumab Advanced, unresectable or metastatic melanoma; non-small cell lung cancer and head 
and neck cancer

2014

PD-1 Cemiplimab Metastatic cutaneous squamous cell carcinoma or locally advanced cutaneous squa-
mous cell carcinoma

2018

PD-1 Toripalimab Unresectable or metastatic melanoma 2018
PD-1 Sintilimab Classical Hodgkin’s lymphoma in patients who have relapsed or are refractory 

after ≥ 2 lines of systemic chemotherapy
2018

PD-1 Camrelizumab Relapsed or refractory classic Hodgkin’s lymphoma treated with at least second-line 
chemotherapy

2019

PD-1 Tislelizumab Relapsed or refractory classical Hodgkin’s lymphoma after at least second-line chemo-
therapy

2019

PD-L1 Atezolizumab Locally advanced or metastatic urothelial carcinoma 2016
PD-L1 Durvalumab Locally advanced or metastatic urothelial carcinoma 2017
PD-L1 Avelumab Metastatic Merkel cell carcinoma (mMCC) 2017
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(IDO-1) and lymphocyte-activation gene 3 (LAG-3), and 
their related antibodies are being evaluated in preclinical 
tumor models and/or in the clinic. At present, 4 immune 
checkpoint antibodies (toripalimab, sintilimab, camreli-
zumab and tislelizumab) developed in China have been 
approved by NMPA for cancer immunotherapy.

Recently, the combination of two immune checkpoints 
in tumor therapy showed a good prospect. For instance, the 
combination of PD-1 and CTLA-4 antibody has been used 
for melanoma immunotherapy. The response rate was 61%, 
and over 22% patients showing a complete response [36].

2.2  Cancer Vaccines

The use of vaccines in prevention and treatment of cancers 
has been explored for more than a century. A remarkable 
progress has been achieved in the development of preven-
tive vaccines—hepatitis B and human papilloma viruses 
(HPVs). HPVs vaccines have demonstrated definite poten-
tials to prevent the cancers and saved millions of lives 
[37]. However, the development of therapeutic vaccines 
was painfully slow and faced numerous challenges. Nowa-
days, Sipuleucel-T  (Provenge®) was the only therapeutic 
cancer vaccine approved by FDA, which is applied for 
the treatment of prostate cancer. Depending on the uptake 
of dendritic cells (DCs) and antigen presentation, cancer 
vaccines need to induce antigen-specific  CD8+ cytolytic 
T cells (CTLs) and antigen-specific  CD4+ T cells for opti-
mally efficacy [38].

With the deep understanding of tumor immunology and 
the success of Sipuleucel-T, several types of cancer vac-
cines and other diverse vaccines have now been evaluated 
in phase II and phase III clinical trials [39, 40], such as 
granulocyte–macrophage colony-stimulating factor (GM-
CSF) gene-modified autologous tumor vaccine (CG8123), 
peptide-based glycoprotein 100 (Gp100), TGF-β2 anti-
sense/GM-CSF gene-modified autologous tumor cell vac-
cine (TAG) and New York esophageal carcinoma antigen 1 
Plasmid DNA (pPJV7611) [41–43]. Cancer vaccines often 
combined with adjuvants to produce powerful immune 
responses [44]. The commonly used adjuvants mainly 
include cytokines/endogenous immunomodulators (e.g., 
GM-CSF), microbes and microbial derivatives (e.g., cyto-
sine-phosphate diesterguaninen (CpG), poly I:C), mineral 

salts (e.g., alum), viral vectors (e.g., adenovirus, vaccinia), 
oil emulsions or surfactants (e.g., Montanide™) and so on 
[38, 45–48].

2.3  Adoptive Cell Therapy

Adoptive cell therapy (ACT) relies on the ex vivo genera-
tion of highly active and tumor-specific lymphocytes, and 
then a large number of these lymphocytes were injected to 
the autologous hosts for cancer treatment [49]. These lym-
phocytes mainly include lymphokine-activated killer cells 
(LAK cells), chimeric antigen receptor T cells (CAR-T 
cells), tumor-infiltrating lymphocytes (TIL), natural killer 
(NK), DCs, macrophages and so on.

ACT has multiple advantages compared with other cancer 
immunotherapeutic approaches. Large numbers of antitumor 
lymphocytes can be readily grown in vitro and recognize 
the tumor specifically, then play effective antitumor immune 
effect [50]. For example, anti-CD19 CAR-T cells showed 
high antitumor efficacy in patients with relapsed B-cell acute 
lymphoblastic leukemia (B-ALL) and B-cell non-Hodgkin 
lymphoma, and the complete response rate was 70–94% in 
various trials [51]. Two kinds of ACT with anti-CD19-mod-
ified T cells have been approved by FDA, i.e., Kymriah™ 
and  Yescarta® [52], which marked an era arriving of ACT. 
Suitable NDDS have been applied for adoptive cell therapy. 
For example, Mitragotr et al. [53] developed an engineered 
particle (name as “backpack”), which could robustly bind on 
the surfaces of macrophages and regulate the phenotypes of 
macrophages by sustained releasing cytokines in vivo. The 
backpack-loaded macrophages could keep antitumor pheno-
types for up to 5 days and showed superior antitumor effect 
compared with free cytokine-treated macrophages.

2.4  Cytokines

Cytokines with biological activity could enhance the 
immune response of patients via inducing direct apoptosis 
effects and generate the antitumor effects indirectly [54, 55]. 
Different cytokines have been intensively applied in clinical 
cancer treatment, such as interferons (INFs), interleukins 
(ILs), tumor necrosis factors (TNFs) and granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) [56].

IFN-α was the first cytokine approved into market in 1995 
and used for leukemia and advanced melanoma. IFN-γ has 
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properties of immunomodulation, which could induce the 
expression of MHC-I/II by APC, activate NK/macrophages 
and induce the differentiation of T cells [55, 57]. IL-2, a 
multifunctional cytokine, is essential in differentiation 
and proliferation of T cells, NK, macrophages and B cells, 
which is effective in metastatic melanoma and renal car-
cinoma [58]. Other lymphokines are also being evaluated, 
such as IL-7, IL-12 and IL-15 [57]. TNFs are one kind of 
most active biological factors found to kill tumor directly 
[59, 60]. GM-CSF showed potential to promote the growth 
and differentiation of macrophages/granulocytes/DCs, which 
could enhance antigen presentation [61].

Although revealing obvious advantages, immunotherapy 
has met great challenges in some tumor types or patients in 
clinics, including drug resistance of immune checkpoints 
inhibitors, weak immunogenicity of therapeutic vaccines, 
significant immune-related adverse events (iRAE) and off-
target side effects etc. [62].

3  Cancer Chemoimmunotherapy

3.1  Cancer Chemotherapy

Caner chemoimmunotherapy is a promising approach for 
improving antitumor efficiency and has been widely studied 
in preclinical and clinical research. Chemotherapy is one 
of the most used cancer treatments, which offers the best 
hope of cancer. Chemotherapy takes effect by toxic com-
pounds that inhibit the fast proliferation of cancer cells [63]. 
Unfortunately, other rapid growth cells may be inhibited by 
chemotherapeutic drugs as well, such as hair follicles cells, 
bone marrow cells and gastrointestinal tract cells. Thus, 
toxic side effects of chemotherapy usually include hair loss, 
severe nausea and bowel problems, etc. Chemotherapy fre-
quently fails in cancer treatments due to poor pharmacoki-
netics and wide distribution in vivo, insufficient delivery 
and multiple drug resistance (MDR) [64]. At present, com-
bination therapy was used to enhance the curative effect of 
chemotherapy, such as chemotherapy combined chemother-
apy, surgical treatment, radiotherapy, photothermal therapy 
[65], photodynamic therapy [66], immunotherapy [67] and 
so on. Among these, the combination of chemotherapy and 
immunotherapy (chemoimmunotherapy) provides a superior 
synergistic effect for enhancing antitumor efficiency.

3.2  How Chemotherapy Influence Cancer 
Immunotherapy?

Chemotherapy drug might induce immunomodulation 
mainly by enhancing intrinsic tumor cell immunogenicity 
[68], regulating the suppressive influence of T cells [69] 
and impacting the function of other cells, such as myeloid-
derived suppressor cells (MDSCs) [70] and DCs [71]. 
Studies have shown that chemotherapeutics could enhance 
intrinsic immunogenicity of tumor cells by upregulating the 
expression of tumor antigens [72] and MHC-I [73], inducing 
the expression of costimulatory molecules [74], downregu-
lating the immune checkpoint molecules expressed on the 
tumor cell surface [75], inducing tumor cell death by secret-
ing ATP or expressing calreticulin [68] and so on [76, 77].

Chemotherapeutic agents in appropriate doses can regu-
late the suppressive influence of tumor-associated T cells. 
Regulatory T cells (Tregs) are immunosuppressive CD4+ T 
cells and usually downregulate the proliferation of effector 
T cells. The numbers of Tregs account for only about 4% 
of total CD4+ T cells, while up to 20–30% of total CD4+ T 
cells in TME, that would suppress the antitumor immune 
remarkably [78–80]. Studies have demonstrated that some 
chemotherapeutic agents can regulate the suppression 
of Tregs to a certain extent [81]. For example, selective 
CDK4/6 inhibitors (such as abemaciclib) could promote 
antitumor immunity by two aspects [19]. On the one hand, 
CDK4/6 inhibitors stimulate the production of IFN-III and 
enhance tumor antigen presentation. On the other hand, 
CDK4/6 inhibitors could suppress the proliferation of Tregs. 
In a study by combining abemaciclib with PD-L1 inhibi-
tor for the treatment of MMTV-rtTA/tetO-HER2 tumors in 
mice, the tumor volumes reduced ~ 70% by day 13.

With the advantages of chemoimmunotherapy, numerous 
clinical trials have shown delightful results in cancer treat-
ment (Table 2). Chemoimmunotherapy exhibited remark-
able clinical outcomes of cancer patients. For example, 
E. Ellebaek et al. analyzed metastatic melanoma patient’s 
treatment with DC vaccination plus cyclophosphamide/
celecoxib/IL-2. Compared with treatment without cyclo-
phosphamide and celecoxib, the 6-month survival increased 
significantly [82]. Nowak et al. had explored the immunolog-
ical effect of CD40-activating antibody with cisplatin/pem-
etrexed in malignant pleural mesothelioma, in which more 
patients showed transient tumor-specific T cell responses 
and achieved long-term survival [83]. The combination of 
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carboplatin or cisplatin, pemetrexed/pembrolizumab, was 
approved by FDA for the first-line treatment of NSCLC.

As shown in recent clinical trials (Table 2), the addition 
of chemotherapeutic drugs to immunotherapy could syn-
ergistically increase the antitumor effects compared with 
either therapy alone [84, 85]. Nevertheless, some clinical 
trials of antitumor effect are still not ideal, such as inad-
equate T cells response, great differentiation in curative 
effect among tumor patients, and many patients do not have 
a good response [86]. Middleton et al. conducted a phase 
3 clinic trial of telomerase peptide vaccine (GV1001) plus 
chemotherapy drug in pancreatic cancer to assess the effi-
cacy and safety. Results interpreted that GV1001 vaccine 
plus chemotherapy didn’t improve overall survival [87]. It 
was suggested that new approaches to further enhance the 
immune response effects during chemoimmunotherapy are 
explored.

4  Nanocarriers for Cancer 
Chemoimmunotherapy

NDDS provides promising strategies for cancer chemoim-
munotherapy, because they are easy to be internalized by 
immune cells and could re-educate TME due to special 
physical and chemical properties, thus boost the immune 
system [88]. NDDS can increase solubility and bioavail-
ability of the agents, prolong the circulation time of agents 
via passive or active targeting, increase the accumulation 
of therapeutic agents in tumor tissue as well as improve the 
pharmacokinetics behaviors in vivo, leading to enhanced 
therapeutic effects and reduced side effects [89–92].

Concerning NDDS applied to chemoimmunotherapy, 
there are several flexible approaches to realize the co-
delivery of multiple agents [93, 94]. For the combination 
of multiple agents in chemoimmunotherapy, one agent can 
be administered as free form and others by NDDS (Free 
drug + Nano), or both were delivered by similar or different 
NDDS, respectively (Nano + Nano), or both agents were co-
encapsulated in one NDDS (co-encapsulation). The advan-
tages and disadvantages of the three approaches to deliver 
multiple agents in chemoimmunotherapy are summarized 
in Table 3.

The “Free drug + Nano” approach is the closest to the 
current treatment of cancer with nanomedicines. The “Free 
drug + Nano” approach exhibited advantages of adjust-
able prescription, controllable administration interval, 
easy for preparation, easy industrial scale-up and clinical 
transformation [95], which mainly include two strategies. 
One is that immunotherapeutic agent can be delivered in 
appropriate NPs, and the chemotherapy drug was adminis-
tered in free form. Yong Taik Lim et al. have designed two 
poly(lactic-co-glycolic acid) (PLGA) NPs combined with 
chemotherapy drug paclitaxel (PTX), one is CpG-loaded 
PLGA NPs (PCNs) to activate BMDCs, the other is IL-10 
small interfering RNA-loaded PLGA NPs (PINs) to silence 
IL-10 [96]. The treatment of PTX followed by PCNs and 
PINs could enhance antitumor effect and increase survival 
rate in B16-F10-bearing melanoma mice compare to PTX 
alone (p < 0.05). Another “Free drug + Nano” approach was 
that immunotherapy agent was administrated in free form, 
and the chemotherapy drug was loaded in NDDS [97]. Li 
et al. have reported TME-activatable prodrug vesicle for co-
loading oxaliplatin (OXA) prodrug and photosensitizer (PS), 

Table 2  Summary of clinical trials for cancer chemoimmunotherapy

Clinical trial Immunotherapy drug Chemotherapy drug Type of cancer References

Phase 1b CD40-activating antibody CP-870,893 Cisplatin and pemetrexed Malignant pleural mesothelioma [83]
Phase 2 Ipilimumab Paclitaxel and carboplatin Non-small cell lung cancer [76]
Phase 2 Cox-2 inhibitor, granulocyte colony-stimulating 

factor, a sulfhydryl (SH) donor and a hemod-
erivative

Cyclophosphamide Pancreatic adenocarcinomas, non-
small cell lung cancer or prostate 
cancer

[161]

Phase 2 Bevacizumab Cyclophosphamide Advanced ovarian cancer patients [84]
Phase 2 Oncolytic adenovirus Cyclophosphamide Advanced soild tumors [81]
Phase 2 Oncolytic adenovirus Temozolomide Advanced soild tumors [162]
Phase 2 Interleukin-2 Cyclophosphamide Metastatic melanoma [82]
Phase 3 GM-CSF + telomerase peptide vaccine GV1001 Gemcitabine/capecitabine Advanced pancreatic cancer [87]
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which would produce immunogenic cell death (ICD) of the 
tumor cells [98]. The prodrug vesicle was combined with 
αCD47-mediated CD47 blockade for antitumor immunity of 
ICD. The results showed that prodrug vesicle-mediated ICD 
and CD47 blockade could inhibit tumor growth, suppress 
metastasis and recurrence of tumor.

The “Nano + Nano” approach might be flexible in formu-
lation, adjustable in administration dosage and have coor-
dinated distribution of two agents [99, 100]. Our group had 
developed two twin-like NPs (TCN) for different cells tar-
geting delivery of sorafenib (SF) and IMD-0354 to enhance 
tumor-localized chemoimmunotherapy [99]. The two TCN 
exhibited coordinated distribution in vivo and could real-
ize the targeting delivery into different cells, thus ensur-
ing superior synergistic antitumor efficacy and M2-type 
macrophages polarization ability. Lin et al. developed two-
type CD44-targeted liposomes, one for anti-IL6R antibody 
encapsulating for immunotherapy and the other for DOX 
encapsulating for chemotherapy to inhibit the metastasis of 
breast cancer [101]. The NPs-αIL6R Ab-CD44 specifically 
modified the immune environment in primary tumor by 
inhibiting the infiltration of TAMs to form a tumor micro-
environment unfavorable for metastasis and achieved a sig-
nificant effect to inhibit the metastasis of breast cancer. For 
another example, Li et al. designed low molecular weight 
heparin (LMWH)-D-α-tocopherylsuccinate (TOS) micelles 
(LT) encapsulating chemotherapeutic drug DOX (LT-DOX) 
or Toll-like receptor 7 agonist imiquimod (LT-IMQ) with 
PD-L1 immune checkpoint blockade for chemoimmuno-
therapy for the treatment of metastatic breast cancer [102]. 
The two micelles could prolong the circulation time and 
increase the accumulation in tumor. LT-DOX could initiate 

a tumor-specific immune response by eliciting ICD, which 
further strengthened by adjuvant LT-IMQ. The combina-
tion with clinically approved PD-L1 checkpoint blockade 
inhibited the activities of Treg cells, which alleviated the 
immune inhibition signal and promoted antitumor efficacy.

The “Free drug + Nano” and “Nano + Nano” approaches 
still suffered from potential mismatched in vivo pharma-
cokinetics and uncontrolled onset time in tumor tissue. The 
“co-encapsulation” approach could uniform the distribution 
of drugs in vivo, control the accumulation in tumor tissue 
at proper ratio, ensure the drug release in a controlled man-
ner and controlled temporal and spatial delivery of multiple 
agents [103]. Abundant NDDS have been designed for “co-
encapsulation” approach in chemoimmunotherapy, includ-
ing liposomes, polymer micelles, dendrimers, metallic and 
inorganic NPs, nanogel and biomimetic NPs (Fig. 2). Moreo-
ver, the representative NDDS application to chemoimmuno-
therapy is summarized in Table 4.

4.1  Liposomes

Liposomes are the bilayer vesicles composed of phospholip-
ids and cholesterol, which possess advantage of high encap-
sulation efficiency, targeting ability and low toxicity, holding 
great prospects in industrial production. The immunotherapy 
agents, like antigens and adjuvants, can be encapsulated in 
the hydrophobic core or adsorbed on the lipid surface via 
charge interactions between agents and lipid or with a chem-
ical linker to the lipid bilayer [119]. Meanwhile, hydrophilic 
small-molecule chemotherapeutic agents can be encapsu-
lated in the interior aqueous cores, in which hydrophobic 
agents can be encapsulated into lipid bilayers [104].

Table 3  Advantages and disadvantages of the three approaches in chemoimmunotherapy

Approach Advantages Disadvantages

“Free drug + nano” approach 1. Adjustable prescription
2. Adjustable administration interval
3. Easy for preparation
4. Easy for industrial scale-up

1. Undesired distribution of two agents in vivo
2. Uncontrolled onset time
3. Insufficient tumor selectivity
4. Potential systemic toxicity

“Nano + nano” approach 1. Flexibility in formulation
2. Adjustable administration dosing
3. Coordinated distribution of two agents in vivo

1. Mismatched half-lives and in vivo pharmacokinetics
2. Uncontrollable onset time in tumor tissue

Co-encapsulation approach 1. Uniform distribution of the drugs in vivo
2. Accumulation in the tumor tissue at proper ratio
3. Drug release in a controlled manner
4. Controlled temporal and spatial delivery of mul-

tiple agents

1. Complex preparation process
2. Difficulty in delivering to different targets



 Nano-Micro Lett.          (2020) 12:142   142  Page 8 of 24

https://doi.org/10.1007/s40820-020-00482-6© The authors

Liposomes have been well applied in cancer therapy 
with kinds of liposomal products approved. Meanwhile, 
liposomes were also widely studied as the vehicles to exert 
the maximal efficacy of chemoimmunotherapy. Chen et al. 
developed pH and matrix metalloproteinases (MMPs) dual 
responsive liposomes (LPDp) with PD-L1 inhibitor conju-
gate combined with low-dose chemotherapy doxorubicin 
(DOX) to achieve enhanced antitumor efficacy [105]. LPDp 
achieved the optimal tumor suppression efficiency (∼ 78.7%) 
due to synergistic contribution of chemotherapeutic agents 
and the blockade of immune checkpoints. Lu et al. [106] 
have established a liposome for co-loading DOX and IDO-1 

inhibitor indoximod (IND) for chemoimmunotherapy (DOX/
IND-liposome). DOX/IND-liposome was self-assembled by 
phospholipid-conjugated IND, followed by the remote DOX 
loading (Fig. 3). The results demonstrated that DOX/IND-
liposomes enhanced the anti-breast cancer immune response 
significantly than DOX-liposomes.

4.2  Polymer Micelles

Polymer micelles are thermodynamically stable colloidal 
solutions formed by self-assembly of amphiphilic block 
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copolymers [120]. Hydrophobic small-molecule drugs 
could be encapsulated in the hydrophobic core of micelles, 
and hydrophilic drugs could be loaded via physical inter-
actions or chemical conjugation [121].  Genexol®-loaded 
PTX and  Nanoxel®-loaded docetaxel (DTX) have been 

approved for the cancer treatment. Polymer micelles have 
been widely evaluated in cancer chemoimmunotherapy. 
Furthermore, the multifunctional polymer micelles can 
be obtained by modification on the surface of poly-
meric materials, which could package hydrophilic or 

Table 4  Summary of NDDS for “co-encapsulation” approach in chemoimmunotherapy

Type of carrier Chemotherapy drug Immunotherapy In vitro cell line or in vivo tumor 
model

References

Liposomes Doxorubicin PD-L1 inhibitor B16F10 tumor-bearing C57BL/6 
mice

[105]

Liposomes Doxorubicin Indoximod 4T1 cells orthotopic breast cancer 
models

[106]

Liposomes Docetaxel PD-L1 mAb B16-F10 cells xenograft tumor 
animal model

[104]

Polymer micelles All-trans retinoic acid PD-L1 mAb C3H tumor-bearing mice [128]
Polymer micelles Dacarbazine DR5 mAb A375 cells and NIH cells [163]
Polymer micelles Dacarbazine DR5 mAb A375 BALB/c nude mouse tumor 

model
[164]

Polymer micelles Paclitaxel HY19991 MCF-7 tumor-bearing mice [137]
Polymer micelles Curcumin NLG919 B16F10 tumor-bearing C57BL/6 

mice
[129]

Polymer micelles Paclitaxel PD-L1 mAb B16F10 tumor-bearing C57BL/6 
mice

[107]

Polymer micelles Pt(IV) prodrug poly(I:C) PC3, MDA-MB231, PANC-1 cells [108]
Dendrimers Doxorubicin CpG 22RV1 cells BALB/mice [109]
Dendrimers Doxorubicin CpG B16-F10 melanoma-bearing mice [110]
Dendrimers Platinum BLZ-945 CT26 colon cancer, B16 mela-

noma models and 4T1 tumor-
bearing mice

[111]

Black phosphorus NPs Doxorubicin PD-L1 mAb/small interfering 
RNA

MC-38 tumor-bearing mice [112]

CuS NPs Docetaxel CpG Negative breast cancers [113]
Hydrogel Celecoxib Anti-PD-1 mAb B16-F10 melanoma and 4T1 

metastatic breast cancer
[149]

Hydrogel Cisplatin IL-15 B16-F10 melanoma-bearing mice [114]
Nanogel Docetaxel NLG919 4T1-Luc murine breast cancer 

xenograft mouse model
[150]

Hydrogel Doxorubicin CpG B16 melanoma-bearing mice [115]
Hydrogel Doxorubicin IL-2/IFN-g B16-F10 melanoma-bearing mice [151]
Hydrogel Doxorubicin melittin-RADA32 B16-F10 melanoma-bearing mice [152]
Albumin biomimetic NPs Temozolomide Regorafenib U87 orthotopic glioma-bearing 

mice
[153]

HLD-biomimetic nanodiscs Docetaxel CpG Glioblastoma [116]
Lactoferrin NPs Shikonin JQ1 CT26 tumor-bearing mice [154]
Erythrocyte membrane biomimetic 

NPs
Paclitaxel IL-2 B16–F10 melanoma-bearing mice [118]

Tumor cell membrane biomimetic 
NPs

Doxorubicin Surface-layer protein (adjuvant) B16–F10 melanoma-bearing mice [117]

NK cell membrane biomimetic 
NPs

Oxaliplatin 1-Methyl-d-tryptophan 4T1 tumor-bearing mice [160]
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hydrophobic drugs efficiently and protect them from deg-
radation in vitro and in vivo.

PLGA and polylactic acid (PLA) are FDA approved 
polymers materials with biodegradable and biocompat-
ible features [122–124]. Polymer micelles prepared from 
PLGA/PLA have been evaluated as drug carriers in chem-
oimmunotherapy [125–127]. For example, Zhou et  al. 
[128] have developed a PLGA-PEG micelle co-delivering 
all-trans retinoic acid (ATRA) and PD-L1 mAb for the 
treatment of oral dysplasia and oral squamous cell car-
cinoma. Antitumor assay in vivo demonstrated that the 
ATRA-PLGA-PEG-PD-L1 had superior therapeutic 

efficacy than free ATRA and  CD8+ T cells were activated 
in TME after treatment.

Other multifunctional polymer micelles were also 
explored to improve the efficacy of chemoimmunotherapy. 
Xintao Shuai and his group designed pH and MMP-2 dual-
sensitive micelles to co-deliver anti-PD-1 antibody (aPD-1) 
and PTX for synergistic cancer chemoimmunotherapy [107]. 
The micelles showed an enhanced tumor chemoimmuno-
therapy effect in murine melanoma model. Juan C. Mareque-
Rivas and co-workers reported Pt(IV) prodrug-modified 
PEGylated phospholipid micelles that encapsulate iron 
oxide NPs (IONPs), which were functionalized with poly 
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(I:C) for chemoimmunotherapy (poly (I:C)-Pt(IV)-IONPs) 
(Fig. 4) [108]. The poly (I:C)-Pt(IV)-IONPs enhanced cyto-
toxicity in different tumor cells significantly and activated 
DC by cisplatin and poly (I:C) in immunotherapy greatly. 
In a study by Yang et al., size-shrinkage and charge-reversal 
micelles co-loaded IDO inhibitor NLG919 and curcumin 
(CUR) were developed (PCPCD) [129]. PCPCD showed 
high efficiency of inhibiting tumor growth, metastasis and 
recurrence in vivo by the combined effects of chemother-
apy-enhanced immunogenicity, and NLG919-induced IDO-
blockade immunotherapy.

4.3  Dendrimers

Dendrimers are hyperbranched spherical polymers formed 
of a hydrophobic central core, branched monomer and 
functional peripheral groups [130]. With the unique struc-
tural features of dendrimers, such as structural clarity, 
close-to-monodisperses, ease of multi functionalities and 
multivalences, numerous novel dendrimer-based NPs have 
been designed and attracted scientific attention [131–133]. 
The hydrophobic central core could be loaded with small 
molecular drugs and the functional peripheral group can 
chemically link immunotherapy agents, such as therapeutic 
antibody. At present, the most widely used dendrimers are 
polyamidoamine (PAMAM), polypropyleneimine (PEI) and 
peptide dendrimers.

At present, several dendrimers have reached clinical trials 
for cancer immunotherapy, and they also have high appli-
cation prospect in chemoimmunotherapy [109, 134–136]. 
He et al. [110] designed a PAMAM-based chemoimmuno-
therapy NPs (LMWH/PPD/CpG) by co-loading DOX and 
CpG for the treatment of metastatic melanoma. DOX conju-
gated on the amino-terminated PAMAM dendrimer by pH-
sensitive hydrazone bond (PPD). LMWH/PPD/CpG were 
formed by negatively charged low molecular weight hepa-
rin (LMWH) coating on the surface of PAMAM. LMWH/
PPD/CpG showed enhanced immune response in vivo and 
increased antitumor efficacy against melanoma (Fig. 5).

Currently, new dendrimers-based NPs have been used to 
achieve the deep penetration of loaded drugs for efficient 
chemoimmunotherapy [137]. Wang et al. reported a pH-
sensitive poly(ethylene glycol)-b-poly(2-azepane ethyl meth-
acrylate) amphiphilic block copolymer (PEG-b-PAEMA), 
which was further modified with PAMAM/Pt to obtain PEG-
b-PAEMA-PAMAM/Pt NPs (SCNs/Pt) (Fig. 6a) [138]. The 
SCNs/Pt could achieve ultrasensitive size switching in the 
acidic TME for improved tumor penetration in vivo. Then, 
the SCNs was used for loading BLZ-945 (small-molecule 
inhibitor of CSF-1R of TAMs) and Pt-based prodrug NPs 
BLZ-945SCNs/Pt (Fig. 6b) [111]. Antitumor study in vivo 
showed that BLZ-945SCNs/Pt could inhibit the tumor growth 
more effectively, compared with BLZ-945SCNs or SCNs/Pt 
monotherapy.
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4.4  Metallic and Inorganic NPs

Metallic and inorganic NPs have shown favorable advan-
tages as drug carriers, such as high drug loading capacity, 
feasibility of functionalization and no immunogenicity. 
A large number of metallic and inorganic NPs have been 
investigated for chemoimmunotherapy, including graphene 

oxide-based NPs (GO NPs) [139], mesoporous silica NPs 
(MSN NPs) [140–143], black phosphorus (BP) NPs [112], 
gold NPs (AuNPs), copper-derived NPs (Cu NPs) and so 
on [144, 145].

Taking BP as an example, BP is a new member of two-
dimensional materials, nonmetallic-layered semiconduc-
tor with corrugated crystalline and textural properties. The 

(a)

mPEG-SVANH2 64

Doxorubicin

(b)
LMWH/PPD/CpG PAMAM

LMWH

CpG ODNs

PEG Heparinase

Hydrazone-DOX

Platelets

ICD elicited by DOX CRT
CpG ODNs

Phagocytosis
HMGB1

Immature DCs

Therapy-sensitive
tumor cells

Vessel
Pulmonary metastasis

Therapy-resistant
tumor cells

Antigen
presentation

IFN-γ

CTLs

T cell
Mature DCs

Primary tumor

NH2 64−n

NH

H2C OCH2CH2−OCH3

CO2Me

O

NH2 64−n−m

NH2 64−n−m

NH2 64−n−m

n

NH

H2C OCH2CH2−OCH3O n

NH

HN

HN

OHHO

OO

O

O O

HO

HO

H3CO

H2N

CH3

OH

N

H2C OCH2CH2−OCH3O n

NH

H2C OCH2CH2−OCH3

(NHCH2CH2CO2Me)m

O n

NH2NH2

(NHCH2CH2CONHNH2)m

x

Fig. 5  a Schematic illustration of reaction scheme for the synthesis of pH-sensitive hydrazone bond linked PEG-PAMAM-DOX conjugates 
(PPD). b Schematic illustration of LMWH/PPD/CpG to inhibit melanoma tumor. Reproduced with permission from Ref. [110]. Copyright 2019 
lvyspring International Publisher



Nano-Micro Lett.          (2020) 12:142  Page 13 of 24   142 

1 3

unique structure enables BP has special properties, such as 
huge surface area, good mechanical flexibility, ultra-high 
photothermal conversion efficiency, good biocompatibility 
and biodegradability. BP showed a good prospect in photoa-
coustic imaging, photothermal therapy [146], photodynamic 
therapy and drug loading for chemoimmunotherapy [145, 
147]. For example, Jong Oh Kim and co-workers reported 
coarse BP flakes with plug-and-play and ultrasonic bubble 
bursting features to load DOX, programmed death ligand 1 
and small interfering RNA (BP-DcF@sPL) for chemo-pho-
toimmunotherapy of colorectal cancer [112]. BP-DcF@sPL 

showed significantly prolonged and lasted survival period 
in MC-38 tumor xenografted in C57BL/6 mouse models.

Metallic material-derived NPs usually have photothermal 
therapy (PTT) and photodynamic therapy (PDT) effects, 
which not only can be used as photosensitizer, but also have 
great potential for cancer immunotherapy due to ICD. For 
example, Chunyan Dong and his group designed a multi-
functional NPs FA-CuS/DTX@PEI-CpG NPs (FA-CD@
PP-CpG) for synergistic PDT, PTT and DTX-enhanced 
immunotherapy [113]. FA-CD@PP-CpG can improve 
immunotherapy effect, such as promote infiltration of 
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CTLs, suppress MDSCs and enhance antitumor efficacy on 
4T1-tumor-bearing mice (Fig. 7).

4.5  Nanogels

Nanogels, with nano-sized hydrogel scaffold, good bio-
compatibility, high water contents and great compatibility 
with various therapeutic agents (such as small-molecule 
drugs and bio-macromolecules) have been considered 
as promising NDDS for effective chemoimmunotherapy. 
Multifunctional nanogels could be rationally designed for 
chemoimmunotherapy, by decorating with targeting ligands, 
synthesizing responsive functional bonds and so on [114, 
115, 148–150]. For example, Chen et al. have reported a 

thermo-sensitive hydrogel co-loaded DOX/IL-2/IFN-γ, 
which showed improved therapeutic efficacy B16F10 mela-
noma tumor by enhancing tumor cell apoptosis and increas-
ing proliferation of the  CD3+/CD4+ T cells and  CD3+/
CD8+ T cells [151]. Special hydrogel systems may have the 
ability for immune-stimulating. For example, Yang et al. 
have reported a melittin-RADA32 hydrogel-loaded DOX 
(MRD) for chemoimmunotherapy through active regulation 
of TMEs [152]. The melittin-RADA32 peptide, denoted as 
MR peptide, was a building block of the peptide hydrogel. 
Melittin is a cationic peptide derived from bee venom with 
the sequence GIGAVLKVLTTGLPALISWIKRKRQQ. The 
sequence of melittin-RADA32 was RADARADARADARA-
DARADARADARADA-RADA-GG-GIGAVLKVLTTGLP-
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ALISWIKRKRQQ-NH2, in which melittin is linked to 
 RADA32 through a GG linker. MRD showed enhanced kill-
ing effect to melanoma tumors by controlling drug release, 
regulating innate immune cells and depleting M2-type 
TAMs (Fig. 8).

4.6  Biomimetic NPs

Biomimetic NPs have been designed to mimic natural organ-
isms/structures through coating or mixing biocompatibility 
materials, which could camouflage of NPs as autologous 
components to escape the clearance of the immune system. 
Biomimetic NPs have the morphology, surface proper-
ties and size of natural structures (such as red blood cells, 
exosomes), which have enhanced targeting ability to deliver 
drugs to target cells or tissues, good biocompatibility, 
improved treatment efficiency and reduced side effects.

Proteins, such as albumin [153], high-density lipopro-
teins (HDL) [116], low-density lipoproteins (SDL), trans-
ferrin family proteins and their-derived proteins [154] have 
been applied to biomimetic NPs for chemoimmunotherapy. 
For example, HLD are involved in cholesterol and molecule 
transport, which could target specific cells. Anna Schwen-
deman et al. reported an HDL-mimicking nanodiscs loaded 
with CpG and DTX (DTX-sHDL-CpG) against glioblas-
toma multiforme (GBM). DTX-sHDL-CpG showed tumor 

inhibition and long-term survival in GBM tumor-bearing 
mice when combined with radiation [116]. The sHDL nano-
disc was an effective NDDS for chemoimmunotherapy.

Cell membrane biomimetic NPs are mainly composed of 
cell membrane coating functional NPs. The proteins on the 
cell membranes derived from different cells still retain bio-
active, thus giving them the ability to immune escape, pro-
longed blood circulation time and tumor targeting [155, 156]. 
Currently, cell membranes of biomimetic NPs mainly include 
erythrocyte, leukocytes, platelets, neutrophils, macrophages, T 
lymphocytes, stem cells and tumor cells [157–159]. Different 
cell membranes make biomimetic NPs have different func-
tions in cancer therapy. Erythrocyte membrane biomimetic 
NPs could improve biocompatibility and biodegradability and 
prolong blood circulation [118]. For example, Zhiping Zhang 
and his group have developed erythrocyte membrane-coated 
nanogels  (NRP+I) for PTX and IL-2 co-delivery and controlled 
release in TME (Fig. 9) [118]. The inner core nanogels were 
consisted of two opposite charged chitosan derivatives and 
2-hydroxypropyl-β-cyclodextrin (HP-β-CD), which was for 
PTX loading and controlled release. The pH-responsive capa-
bility to acidic TME could be precisely controlled by adjusting 
the formulation of nanogel. The erythrocyte membrane was 
further coated on the nanogel for the delivery of IL-2. PTX 
may be controllable and pH-responsive released with the help 
of HP-β-CD and chitosan in TME. After losing the support of 

MR

Lymphatic vessel

DOX

B16-F10 cells

M2-like TAM

NK

Th cells

imDC

mDC

CTL

TEM

MRD hydrogel

0.9% NaCl

DOX

+

RADA32-Melittin

TEM
Draining

lymph node
Slow

release

Tumor
antigenactivation

de
pl

et
io

n

NK
Th cells imDC

mDC

CTLM2-like TAM

Metastasis
TEM Second tumor

Fig. 8  Mechanism of MRD hydrogel-mediated antitumor effects against melanoma. Reproduced with permission from Ref. [152]. Copyright 
2018 American Chemical Society



 Nano-Micro Lett.          (2020) 12:142   142  Page 16 of 24

https://doi.org/10.1007/s40820-020-00482-6© The authors

inner core, the membrane could be disintegrated to constantly 
release IL-2 into TME.  NRP+I showed enhanced antitumor 
activity with increased antitumor immunity and improved 
drug penetration. Tumor cell membrane biomimetic NPs have 
homologous targeting and homology adhesion, which enable 
its specific recognition and aggregation in tumor tissue [117]. 
Lymphocytes membrane biomimetic NPs could retain the abil-
ity to migrate to tumor sites and prolong circulation time in 
the body [160].

5  Conclusion

The clinical and preclinical results uphold the rationality 
for the combination of chemotherapy and immunotherapy. 
Combining immunotherapy agents with chemotherapeu-
tic drugs has great potentials as long-term maintenance 
therapy for cancer to maximize the synergistic antitu-
mor effects. When designing a rational prescription for 
combinational chemoimmunotherapy in clinics, the 
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administration dosages, intervals as well as cycles should 
be strategically considered to avoid iRAE effectively. 
NDDS provides a favorable platform in promoting the 
efficacy of chemoimmunotherapy, and numerous multi-
functional NDDS have been designed up to now. These 
NDDS designed for chemoimmunotherapy showed many 
advantages, including increased solubility and bioavail-
ability of both chemotherapy drugs and immunotherapy 
agents, prolonged circulation time in vivo, increased the 
accumulation of therapeutic agents in tumor site by spe-
cific-targeting and improved pharmacokinetics behaviors 
in vivo, thus significantly enhancing the therapeutic effects 
even at low-dose chemotherapeutic agents and reducing 
the side effects.

Despite NDDS-exhibited superiority in interrupting tumor 
immune balance, eliminating tumors and inhibiting metastasis, 
increased accumulation of immunotherapy agents at the tumor 
site might induce immunogenicity or autoimmune diseases 
and increase the occurrence of iRAE. Furthermore, chemo-
therapeutic agents and immunotherapy agents usually have 
different target cells, co-encapsulation strategies are difficult 
to achieve separate delivery to different cells in tumor tissue, 
which may unconsciously increase the off-target effect. Tim-
ing and quantitative controlled release of different drugs with 
precision targeting to different cells provide a new direction 
for the improvement in cancer chemoimmunotherapy or even 
immune-related multimodal-therapy. Otherwise, the clinical 
translation of NDDS are still facing significant obstacles due 
to complex processes, unavoidable drug leakage, undefined 
safety in excipients and undesired stability etc. In view of this, 
NDDS with simple prescription, mature preparation process 
and good biocompatibility are urgently pursued for higher 
clinical translation prospects. In a word, the combinational 
chemoimmunotherapy still has a long way to conquer in cancer 
treatment, and NDDS may play a crucial role in exerting their 
unique advantages.
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