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S1 Experimental Section  

S1.1 Materials 

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), 1,3,5-benzenetricarboxylic acid (H3BTC), 

and potassium hydroxide (KOH) were purchased from Aladdin Chemicals. N, N-

dimethylformamide (DMF) was obtained from Xilong Chemical Co., Ltd (China). 

Carboxylated multi-walled carbon nanotubes (CNTs) were purchased from Nanjing 

XFNANO Materials Tech Co., Ltd (China). Commercial activated carbon (AC, YEC-

8, FUZHOU YIHUAN CARBON., LTD). NKK separator (MPF30AC-100, Nippon 

Kodoshi Corporation, Kochi, Japan). All chemical reagents were analytical purity and 

without further purification. 

S1.2 Characterization 

The microstructures and morphologies of samples were observed via field-emission 

scanning electron microscopy (FE-SEM, MERLIN Compact, Carl Zeiss, Germany) and 

transmission electron microscopy (TEM, Tecnai G2 F30, Netherlands). Before test, the 

appropriate amounts of obtained samples were uniformly dispersed into the ethanol 

under ultrasonic, and then dropped on the cleaned silicon slice using glass capillary. 

After dried, the prepared silicon slice was pasted on the aluminum substrate using 

conductive tape to perform the SEM and EDS characterizations. The crystal structures 

of samples were identified by powder X-ray diffraction (XRD, Bruker D8 Advance X-

ray diffractometer, Cu Kα radiation,  = 1.540598 Å). The X-ray photoelectron 

spectroscopy (XPS) measurements were conducted on an AXIS ULTRA DLD 

spectrometer (SHIMADZU, Japan) to analyze surface elemental composition and 
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valence state. Nitrogen adsorption/desorption isotherms were conducted on BELSORP-

mini-II (BEL Japan) adsorption analyzer. The specific surface area was calculated using 

the Brunauer-Emmett-Teller (BET) method. The pore size distribution was calculated 

from the corresponding adsorption branch of N2 isotherm by BJH method for 

mesopores. Fourier transform infrared spectroscopy (FTIR) was conducted on a 

Spectrum One instrument (Perkin Elmer, USA). 

S1.3 Calculation Formulas 

The specific capacity (C g−1) was calculated according to the following equations [S1, 

S2]: 

𝐶 =
𝐼𝑡

𝑚
 

Where I (A) is the discharge current, 𝑡 (s) is the discharge time, m (g) is the mass 

loading of the active material. 

The charge storage of the positive and negative electrodes was balanced by controlling 

the loading mass ratio of positive electrode material and negative electrode material 

using the following equation [S3]. 

Q+ = Q− 

Q = mC 

𝑚+

𝑚−
=

𝐶−

𝐶+
 

Where Q is the charge stored by each electrode, m (g) is the mass of the active material, 

and C (C g-1) is the specific capacity. 

The specific capacitances Cs (F g-1) of HSC device were calculated from the GCD data 

according to following equation [S4, S5]: 

𝐶𝑠 =
2𝑖𝑚 ∫ 𝑉𝑑𝑡

𝑉2 |
𝑉𝑓

𝑉𝑖

 

Where ∫ 𝑉𝑑𝑡 is the integral area of the discharge curve, and the V (V) is the potential 

with initial and final values of Vi and Vf, respectively. im=I/m (A g-1) is the current 

density, where I is the current and m is the mass of active materials. 

The energy densities E (Wh kg-1) and power densities P (W kg-1) of HSC device were 

calculated as follows [S2, S5, S6]: 

𝐸 =
𝑖𝑚 ∫ 𝑉𝑑𝑡

3.6
 

𝑃 =
𝐸

𝑡
× 3600 
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Where t (s) is the discharge time. 

Table S1 Production yield of Ni-MOF and a series of Ni-MOF/C-CNTs 

Sample 

Raw material (g) 

Product (g) Yield 

Ni(NO3)2·6H2O H3BTC C-CNTs 

Ni-MOF 0.872 0.105 0 0.456 46.7% 

Ni-MOF/C-CNTs20 0.872 0.105 0.020 0.475 47.6% 

Ni-MOF/C-CNTs40 0.872 0.105 0.040 0.519 48.5% 

Ni-MOF/C-CNTs60 0.872 0.105 0.060 0.548 52.8% 

S2 Supplementary Figures and Tables 

 

Fig. S1 Electronic photos of as-obtained a Ni-MOF, b Ni-MOF/C-CNTs20, c Ni-

MOF/C-CNTs40 and d Ni-MOF/C-CNTs60. 

 

As observed, the pure Ni-MOF present light green color; after incorporated C-CNTs, 

the obtained Ni-MOF/C-CNTs become black color. Regarding to volume samples, it 

can be observed that the appropriate amount of C-CNTs has result in slightly increment 

of volume; however, with increasing the C-CNTs amount, a volume shrink was 

observed, which can be attributed to the agglomeration caused by sharp increase of 

nucleation sites. 
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Fig. S2 SEM images of a, b C-CNTs and c, d CNTs 

 

Fig. S3 SEM images of as-synthesized a, b Ni-MOFs20 and c, d Ni-MOF/C-CNTs60 

As shown in Fig. S3a, b, the small amount of C-CNTs have no obvious influence on 

morphology evolution of Ni-MOF, the stacked nanosheets can still be observed. 

However, when the content of C-CNTs increase continuously, an agglomeration 

tendency have appeared for Ni-MOF/C-CNTs60 (Fig. S3c, d). These observation reveal 

that the moderate amounts of C-CNTs is very important for constructing the ultrathin 

2D well-interconnected nanosheets. 
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Fig. S4 SEM images of Ni-MOF/CNTs40 

As shown in Fig. S4, different from the layer-by-layer stacking structures of pristine 

Ni-MOF, the Ni-MOF/CNTs40 appear loose nanostructure, indicating the CNTs has the 

effect on crystallization of Ni-MOF. However, we can observe plentiful CNTs on the 

surface of Ni-MOF/CNTs40 hybrid instead of embedding in Ni-MOF, which is totally 

different from the well-interconnected ultrathin nanosheets of Ni-MOF/C-CNTs40. 

This result indicates that the C/O groups of C-CNTs play a significant role in the 

nucleate and growth process. 

 

Fig. S5 Raman spectra of Ni-MOF and a series of Ni-MOF/C-CNTs nanohybrids 

 

Fig. S6 High-resolution XPS spectrum for C 1s of Ni-MOF/C-CNTs40 

Two major peaks at 284.5 and 288.5 eV correspond to phenyl carbons (C=C) and 

carboxylate carbons (O–C=O). 
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Table S2 Comparison of electrochemical performance for different Ni/Co MOFs based electrode 

materials in alkaline electrolyte 

Electrode materials Potential window 

(V) 

Specific capacitance (capacity) Capacitance 

retention 

References 

Pillared Ni-MOFs 0-0.45 (vs. SCE) 552 F g-1 (1 A g-1) 71.6 % (50 A g-1)  [S7] 

CoNi-MOF 0-0.45 (vs. SCE) 1104 F g-1 (1 A g-1) 52 % (32 A g-1)  [S8] 

2D Ni-MOF 0-0.35 (vs. SCE) 1127 F g-1 (0.5 A g-1 ) 59.3 % (10 A g-1 )  [S9] 

Ni-MOF 0-0.45 (vs.Hg/HgO) 1021 F g-1 (0.7 A g-1) 80.6 % (7 A g-1)  [S10] 

Zn-doped Ni-MOF 0-0.35 (vs. SCE) 1620 F g-1 (0.25 A g-1) 57.3 % (10 A g-1)  [S11] 

Ni/Co-MOF 0-0.55 (vs. Ag/AgCl) 530.4 F g-1 (0.5 A g-1) /  [S12] 

Ni-Tp/PANI 0-0.55 (vs. Hg/HgO) 938.8 F g-1 (1.8 A g-1) 19.4 % (9 A g-1)  [S13] 

GM-LEG@Ni-MOF 0-0.35 (vs. SCE) 987.6 F g-1 (0.5 A g-1) 69.4% (10 A g-1 )  [S14] 

Zn-doped Ni-MOF 0-0.45 (vs. SCE) 237.4 mAh g-1 (1 A g-1) 51.5% (10 A g-1)  [S15] 

2D Ni-MOF/C-CNTs 0-0.54 (vs. Hg/HgO) 1259 F g-1/680 C g1(1 A g-1) 63 % (10 A g-1) This work 

 

Fig. S7 Galvanostatic charge-discharge curves of a Ni-MOF, b Ni-MOF/C-CNTs20, c 

Ni-MOF/C-CNTs60 and d Ni-MOF/CNTs40 
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Fig. S8 Specific capacity at various current densities for Ni-MOF/CNTs40 

 

Fig. S9 Comparison of Nyquist plots for Ni-MOFs Ni-MOF/C-CNTs40 

 

Fig. S10 CV curves of the HSC device in various scan rates 
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Fig. S11 Specific capacitances with respect to the current densities of HSC device 
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