Supporting Information for

Low-temperature Growing Anatase-TiO₂/SnO₂ Multi-dimensional

Heterojunctions at MXene Conductive Network for High-efficient

Perovskite Solar Cells

Linsheng Huang¹, Xiaowen Zhou¹, Rui Xue¹, Pengfei Xu¹, Siliang Wang¹, Chao Xu¹, Wei Zeng^{1, *} Yi Xiong^{2, 3, *}, Hongqian Sang^{3, 4}, Dong Liang¹

¹National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, School of Electronics and Information Engineering, Anhui University, No.111 Jiulong Road, Hefei 230601, People's Republic of China

²Science and Technology Institute, Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430073, People's Republic of China

³School of Physics and Technology, MOE Key Laboratory of Artificial Micro- and Nano-Structures and Center for Electron Microscopy, Wuhan University, Wuhan 430072, People's Republic of China

⁴Department of Physics, King's College London, The Strand, London WC2R 2LS, United Kingdom

*Corresponding authors. E-mail: youfmail@163.com (Wei Zeng); xiong@wtu.edu.cn or xiongyi@whu.edu.cn (Yi Xiong)

Supplementary Figures

Fig. S1 (a) The SEM morphology, (b-c) TEM morphologies, and (d) AFM surface morphology of resulted MXene material with its height profile in inset

Fig. S2 XRD pattern of resulted MXene material

Fig. S3 XRD patterns of MDCN before and after controlled anneal method in Air& N_2 atmospheres

Fig. S4 a The survey spectra of MDCN before controlled anneal. **b** The extracted F 1s spectra of MDCN samples before and after controlled anneal

Fig. S5 Survey spectrum of a pure MXene b with its Ti 2p

Fig. S6 Wetting angles of a water droplet on the (a) SnO₂ and (b) MDCN films

Fig. S7 AFM images of (a) SnO₂ and (b) MDCN surfaces

Fig. S8 Top-view SEM images of perovskite/ETL/FTO with different ETL: (a) SnO₂; (b) MDCN-0.01; (c) MDCN-0.02 (i.e., MDCN sample); (d) MDCN-0.03; (e) MDCN-0.05; (f) MDCN-0.1. (g-l) Statistic grain size distributions for perovskite film in (a-f)

Fig. S9 Transmittance spectra of SnO₂, MDCN-0.01, MDCN-0.02, MDCN-0.03, MDCN-0.05, and MDCN-0.1 ETLs

Fig. S10 (a) J-V curves and (b) Nyquist plots of EIS for PSCs using SnO₂, MDCN-0.01, MDCN-0.02, MDCN-0.03, MDCN-0.05, and MDCN-0.1 as ETLs. The equivalent circuit for (b) shown its inset.

Fig. S11 Histogram of parameters of PSCs with SnO₂ and MDCN-Air&N₂ ETLs

Fig. S12 The SCLC curve of SnO_2 and MDCN-Air&N₂ layers with the test devices sketch in inset

Fig. S13 Absorption onset value measure for SnO_2 and MDCN-Air&N₂ samples with UV-vis absorption spectra

Table S1 Atomic contents of different Ti-based bonds for pure MXene and MDCN

	Ti-C	Ti ²⁺	Ti ³⁺	Ti ⁴⁺
Pure MXene	18.76	33.91	31.67	15.65
MDCN	19.94	31.27	25.39	23.40

Table S2 Device performance of PSCs based on ETLs with different MXene contents(30 samples for each type of ETL)

ETL	$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
SnO ₂	1.03 ± 0.04	22.51 ± 1.56	70.55 ± 3.11	16.42 ± 0.41
MDCN-0.01	1.05 ± 0.05	22.73 ± 1.65	72.89 ± 3.50	17.38 ± 0.48
MDCN-0.02	1.07 ± 0.03	23.13 ± 1.39	74.62 ± 3.35	18.44 ± 0.70
MDCN-0.03	1.04 ± 0.05	21.92 ± 0.76	73.14 ± 2.88	16.74 ± 0.24
MDCN-0.05	1.03 ± 0.06	22.33 ± 1.79	69.51 ± 3.84	15.93 ± 0.82
MDCN-0.1	1.02 ± 0.04	21.76 ± 0.74	69.71 ± 3.04	15.54 ± 0.44