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HIGHLIGHTS

• The hydroiodic acid was explored systematically to modify PbS quantum dots (QDs) ink process, which could remove trap states by hydroxyl 
ligand and improve iodine passivation on the PbS‑QDs surface.

• This strategy solved the essential question of PbS‑QDs ink process and showed the favorable application prospects in QDs technology.

ABSTRACT The recent emerging progress of quantum dot ink (QD‑ink) has over‑
come the complexity of multiple‑step colloidal QD (CQD) film preparation and pro‑
nouncedly promoted the device performance. However, the detrimental hydroxyl (OH) 
ligands induced from synthesis procedure have not been completely removed. Here, a 
halide ligand additive strategy was devised to optimize QD‑ink process. It simultaneously 
reduced sub‑bandgap states and converted them into iodide‑passivated surface, which 
increase carrier mobility of the QDs films and achieve thicker absorber with improved 
performances. The corresponding power conversion efficiency of this optimized device 
reached 10.78%. (The control device was 9.56%.) Therefore, this stratege can support as 
a candidate strategy to solve the QD original limitation caused by hydroxyl ligands, which 
is also compatible with other CQD‑based optoelectronic devices.
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1 Introduction

Solution‑processed PbS colloidal quantum dots (CQDs) are 
among the emerging materials for third‑generation photovol‑
taics in view of their simple process [1], large scale [2], low‑
cost manufacturing [3], and size‑dependent bandgaps [4, 
5]. In the past decade, surface passivation [6–8] and device 
architecture [9–14] have been implemented to improve the 
photovoltaic performances; the efficiencies of PbS QD solar 
cells have been realized continuous breakthroughs. Recently, 
QDs‑ink process as a new effective technique applied in 
PbS‑QDs solar cells to refresh a new record of power con‑
version efficiency (PCE) of 12.6% [15]. Therefore, it is a key 
to further optimize above QDs‑ink [15–17] process so as to 
promote solar cells performance and its industrialization.

In typical CQD synthesis, the QD surface was capped by 
long‑chain oleate surfactants in the representive (001) and 
(111) facets for passivation and stabilization [6, 18, 19]. 
Recently, Zherebetskyy et al. [18] reported hydroxyl as a 
parasitic surface ligand also participated in PbS‑QDs sur‑
face and played a key role in stabilizing the PbS (111) facet. 
That is, the synthesized QDs have two well‑defined (001) 
and (111) facets, and the nonpolar (001) facet can be cov‑
ered by oleate to keep stable state. However, the entire polar 
(111) facets cannot be fully bonded by the steric hindrance 
of  OA− molecules instead of demanding a smaller hydroxyl 
ligand (OH) to preserve QDs (Fig. 1a) overall charge neu‑
trality and minimize surface energy [18]. Unfortunately, 
hydroxyl groups have been proved to introduce sub‑bandgap 

states leading to charge recombination in PbS‑QDs solar cells 
[16, 20, 21], which was detrimental for device performance 
and photostability. To solve this problem, a series of methods 
have been developed to eliminate the hydroxyl such as QDs‑
ink process [16, 17], synthesis precursor selection [22], and 
thermal annealing [21]. The world record efficiency (12.6%) 
was achieved from the QD‑ink process strategy [15]. How‑
ever, the hydroxyl as an inherent defect cannot be removed 
[16, 21] completely in QDs‑ink process. Thus, it remains an 
open challenge for this technology to overcome the hydroxyl 
effect.

It is well known that the short slab of PbS‑QDs for 
photovoltaic technology is the imperfect surface passiva‑
tion, which has a remarkable impact on their energy bands 
[11, 23], trap states [24], carrier diffusion length [8, 13, 
25], and stability [3, 21]. We explore a method to remove 
hydroxyl ligand from PbS‑QDs surface and introduce a 
reliable ligand ion binding to the QD surface for further 
passivation. Then, we attempt to use one halogenic acid 
that can be deprotonated to react with hydroxyl ligands 
and enable halide ions to bind the Pb terminal facet. As 
the most stable halide ligand for PbS‑QDs is iodine ion 
[2, 11], we perform a suitable amount of mild HI additive 
in  PbI2‑PbS DMF solution for above motivation.

According to above scenario, here we report a facile HI 
additive in PbS‑QD‑ink system to facilitate the control 
of ligand reactivity and improve the QD‑ink stability. It 
can favor the detachment of hydroxyl groups from (111) 
facets and promote iodide ligands binding to Pb atoms. 
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Fig. 1  a A schematic description of the solution‑ligand exchange of  PbI2 treated PbS‑QDs (Process I) and HI‑PbI2 treated PbS‑QDs (Process 
II). b Corresponding trap level evolution of PbS‑QDs treated by  PbI2 and HI‑PbI2 ligands
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The PbS‑QDs film treated by the new HI‑PbI2 ligands has 
obtained a longer carrier diffusion length and lower trap 
density. This optimized PbS‑QDs solar cells have obtained 
PCE of 10.78% and exhibited superior operation stabil‑
ity comparing with control devices. The developed ligand 
additive engineering strategy pronouncedly suppresses the 
original detrimental effects of hydroxyl and acts as effec‑
tive strategy to promote the progress of QD technologies 
[26, 27].

2  Materials and Method

2.1  Materials

Zn(CH3COO)2·2H2O (Sinopharm, ≥ 99%), monoetha‑
nolamine (Sinopharm, 99%), Ethanedithiol (Sinop‑
harm, ≥ 99%), hydroiodic acid (Sinopharm, 45%), lead 
oxide PbO (Alfa, 99.9%), oleic acid (OA) (Alfa Aesar, 
90%), 1‑octadecene (ODE) (Aladdin, ≥ 90%), hexa‑
methyldisilathiane (TMS) (Tci, 95%), octane (Sinop‑
harm, ≥ 95%), acetone (Sinopharm, ≥ 99.5%), ethanol (Sin‑
opharm, ≥ 99.7%), isopropyl alcohol (Sinopharm, 99.7%), 
1,2‑ethanedithiol (EDT) (Aladdin, 97%), acetonitrile 
(Sinopharm, ≥ 99.8%), lead iodide  (PbI2) (Aldrich, 99%), 
dimethylformamide (DMF) (Aladdin, 99.8%), butylamine 
(BTA) (Aladdin, 98%), 1‑ethyl‑3‑methylimidazolium 
iodide (EMII) (Alfa, 97%), tetramethylammonium hydrox‑
ide pentahydrate (TMAH) (Aladdin, 97%).

2.2  Fabrication and Characterization

2.2.1  Preparation of ZnO Film by Sol–Gel Method

The ZnO precursor was spin‑coated on ITO glass at 
4000 r min−1 for 30 s under ambient environment and then 
annealed at 320 °C for 12 min.

2.2.2  PbS CQDs Synthesis

Oleate‑capped PbS CQDs were synthesized under Schlenk‑
line conditions according to previous reports [2] with slight 
modifications. A mixture of lead oxide, oleic acid, and 
1‑octadecenein a flask was degassed and heated for 12 h. 
After that, TMS was injected into lead oleate solution under 
vigorous stirring. After purification, the final separated QDs 

were re‑dispersed in octane with a 30 mg mL−1 for solar cell 
fabrication.

2.2.3  Device Fabrication

PbS‑CQD films fabricated by solution‑phase ligand‑
exchange process serves as the main light‑absorbing layer; 
the oleic acid‑capped CQDs (OA‑CQDs) could be changed 
into halide‑passivated CQDs under air as described in previ‑
ous reports [16]. Halide ligand was prepared by  PbI2‑DMF 
solution for ligand exchange. The OA‑CQDs in octane 
were mixed with the as‑prepared DMF solution. The ligand 
exchanged PbS‑CQDs were dried to get CQD powder. The 
obtained iodide‑passivated PbS CQDs were re‑dispersed in 
mixed solvent butylamine (BTA) and N,N‑dimethylforma‑
mide (DMF) with desired concentrations for absorber depo‑
sition. For modified QDs‑ink process, it is similar to above 
process and the only difference is the amount of HI additive 
in  PbI2 ligand solution. After that, two PbS‑EDT layers as 
an hole extraction layer were fabricated via a layer‑by‑layer 
method. Finally, ~ 80 nm Au was deposited by thermal evap‑
oration at low pressure (< 4 × 10−3 Pa).

The exact details were shown in supporting information.

3  Results and Discussion

A schematic diagram of the solution‑phase ligand‑exchange 
process is present in Fig. 1a. Before the ligand exchange, 
PbS‑CQDs are capped with  OA− and  OH− groups. Dur‑
ing the  PbI2 ligand exchange (Process I), the long‑chain 
and bulky oleate ligands are partially replaced by  I− ani‑
ons, but some hydroxyls hold strong bond with Pb atom of 
PbS‑(111) terminate facet, leading to detrimental effect to 
device performance [16, 21, 22]. After adding some amount 
of HI additive in the  PbI2 ligand exchange (Process II), not 
only the OA groups are exchanged by iodine ligands, but 
also the hydroxyls are expected to be eliminated by HI to 
form a small quantity of free water. For such modified ligand 
exchange, the trap states are significantly purified comparing 
with the former one (Fig. 1b). Here, we denoted the HI addi‑
tive in  PbI2‑PbS‑QDs process as w/HI, without HI additive 
devices as w/o HI or control ones, and oleic acid‑capped 
PbS‑QDs as OA‑PbS.

To confirm our strategy effect, we measured Fourier‑trans‑
form infrared (FT‑IR) for QD films w/o and w/HI additive to 
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explore the evolution of surface organic groups. The simi‑
lar weak signal of oleate and hydroxyl ligands is probed in 
w/o and w/HI‑PbS compared to OA‑PbS‑QDs (Fig. S2a) 
(C–Hx vibrations at 2852–2922 and 1380–1460  cm−1, 
 COO− vibrations at 1400–1545  cm−1,  OH− vibrations 
at 3200–3600 cm−1) [2, 16], revealing most of OA and 
hydroxyl ligands were removed by QDs‑ink process, only 
some of residual signal could be detected. For detailed com‑
parison, the  OH− vibration [28] peaks of QDs‑ink films are 
highlighted by red square (Fig. S2b). After we added HI in 
the ligand solution, the  OH− peak intensities were reduced 
two times and the left oleate group signal was also removed. 
Those results are roughly consistent with our hypothesis, 
which expect that the HI additive could help to eliminate 
 OH−. We further studied the terminal functional groups 
using 1H nuclear magnetic resonance (NMR) spectroscopy. 
The comparisons among the spectra of background signals 
(Fig. S3) and ligand exchanged QDs (Fig. S4) indicated that 
a small amount of oleate residue existed in ink‑processed 
PbS‑QDs. After HI was added in  PbI2‑PbS, the hydroxyl 
peak at 4.48 ppm was suppressed and a broader  H2O signal 
at 3.82‑4.0 ppm appeared. It further proved that the HI addi‑
tive could react with OH group by deprotonation reaction to 
form the free  H2O.

To enrich the evidence of hydroxyl groups in PbS‑QDs, 
we also employed solid‑state 1H NMR to detect the hydroxyl 
from the w/and w/o HI‑PbS‑QDs powders, which is more 
close to work condition of these films without any solvents 
affection. The Pb(OH)2 powders were used as reference 
sample. The w/o HI‑PbS + TMAH was obtained by add‑
ing 2% mole ratio (related to  PbI2) TMAH into w/o HI‑PbS 
and was checked by solid‑state NMR. As shown in Fig. 2a, 

b, the w/HI‑PbS shows lower intensity of hydroxyl groups 
than w/o HI‑PbS powders. It means that HI additive can 
suppress hydroxyl in PbS‑QDs, which is consistent with IR 
results. To explore the role of hydroxyl group in these sam‑
ples, we measured the photoluminescence quantum yield 
(PLQY) of these powders in solution (Fig. 2c). The PLQY 
of w/o HI‑PbS is 13.79%, w/HI‑PbS is 17.94%, while the 
w/o HI‑PbS + TMAH shows lowest PLQY (5.17%), which 
indicates much hydroxyl along with sub‑bandgap states or 
trap states was suppressed in w/HI‑PbS‑QDs. Based on 
above results, we can conclude that the hydroxyls reside in 
ligand exchanged PbS‑QDs ink and introduces trap states 
in PbS‑QDs. Using suitable amount HI as additive in PbS‑
PbI2‑DMF system, it can play a role of suppression to the 
its related trap states.

In order to optimize the content of HI additive in the PbS‑
QDs, a various amount of HI additive was utilized in  PbI2 
ligand solution. As shown in absorption spectra (Fig. S5a, 
b), there is no appreciable change in exciton peak between 
w/o HI and w/HI films with low concentration of HI addi‑
tion (within 5%). However, more HI additive incorporated 
in  PbI2‑PbS‑QDs solution, the monodispersity of QDs (Fig. 
S5c, d) degraded because of fusion or decomposition in PbS‑
QDs. Such results also confirmed by X‑ray diffraction and 
PL spectra (Fig. S6). Therefore, it is necessary using small 
amount of HI as additive in PbS‑QDs ink to preserve the 
native properties of PbS‑QDs without structure degradation.

To discuss the changes of the hydroxyl ligands of w/o and 
w/HI treated PbS‑QDs, we performed X‑ray photoelectron 
spectroscopy (XPS) to investigate the species in QD films. As 
shown in Figs. 3a and S7, the O 1s peaks are normalized by 
Pb peak area, and w/HI films obtain lowest intensity of O 1s, 
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revealing the minimum residual  OA− ligand compare to oth‑
ers. The O 1s peak can be deconvolved into Pb–O (529.6 eV), 
Pb–OH (531.3 eV), and  COO− (532.0 eV) [16, 21]. For OA‑
PbS film, the O 1s peak is dominated by hydroxyl and oleate 
ligand (Fig.S7b), which are introduced from synthesis process 
to bind PbS‑QDs surfaces [18]. As shown in Fig. 3a–c and 
Table 1, the Pb‑OH peak intensity of w/HI film decreases 
near two times comparing with w/o HI film, which indicated 
that hydroxyl had been suppressed by adding HI additive in 
the ligand solution. It is worth noting that the  COO− group 
has the lowest signal comparing with other two sub‑peaks of 
O 1s (Fig. 3b, c); Zherebetskyy et al. attributed this result to 
the  OA− ligands, which has higher possibility for inelastically 
scattering than  OH− ligand, resulting in an underestimate of 

the actual relative amount of  COO− and  OH− groups [18]. I 
3d peaks are also normalized by Pb peak area as shown in 
Fig. 3d. It is clear that w/HI films hold higher I 3d intensity 
than w/o HI films. From Fig. 3d–f, the Pb‑I peak [21, 29, 30] 
can be deconvolved into three components. From high to low 
energy, those binding energies for I 3d2/5 are 620.2, 619.5, 
and 618.4 eV, respectively. (All are constrained to FWHM 
of < 1.1 eV and within < 0.2 eV deviation.) The higher energy 
(620.2 eV) component corresponds to iodide ions loosely 
binding to organic cations or weakly attaching on the QD sur‑
face; others lower energy component belongs to iodide bind‑
ing to Pb atoms [21]. The results of w/HI film show a decrease 
of the higher energy peaks and a corresponding increase in 
the lower energy peaks. By calculating the integral area of I 
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Table 1  Fitting parameters and quantitative analysis of O 1s spectra of w/o and w/HI PbS‑QDs films in Fig. 3

The bold words were marked to highlight the changes of trap groups, OH group in QDs, in the XPS results

PbS‑QDs Component Peak FWHM Area (%) Component ratio

w/o HI PbS‑QDs Pb–O 529.6 1.1 55.7 0.12
Pb–OH 531.3 1.2 33.6 0.071
COO,CO2 532.0 1.2 10.7 0.022

w/HI PbS‑QDs Pb–O 529.7 1.1 59.7 0.084
Pb–OH 531.4 1.2 28.0 0.032
COO,CO2 532.3 1.2 12.3 0.017
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3d peak, it can be found the I/Pb ratio increases from 0.65:1 
to 0.76:1 (Fig. S8). Based on the O 1s and I 3d signal changes 
in w/o and w/HI films, we consider that this effect is attributed 
to the reduced OH groups and an increase in iodide atoms that 
are strongly bound to the surface of the QDs. In view of the 
above results (FT‑IR, NMR, and XPS), we can conclude that 
HI acting as additive reacts with hydroxyl ligand via a depro‑
tonation reaction and enables iodide to bind on PbS‑QDs sur‑
face with enhanced passivation. It should be noted a similar 
work [31] has implemented in big size QDs‑based infrared 
solar cells. They focused on the removal of original ligand and 
improvement in CQD packing; there was limited elaboration 
for the content changes and evolution between hydroxyl and 
iodine. Our work paid more attention to the suppression of 
hydroxyl and passivation of iodine ligand, therefore, made 
this evolution process more clear. 

To identify the effects of HI additive, we systematically 
optimized the amount of HI additive in  PbI2‑DMF ligand 
solution (Fig. 4) and the thickness of absorber for both w/
and w/o HI devices (Fig. S9). In w/HI devices, the optimized 

mole ratio to  PbI2 is 2%, which achieve the maximum effi‑
ciency (10.78%) and the maximum Jsc (27.86 mA cm−2) 
(average Jsc is ~ 25.88 mA cm−2) with the absorber thick‑
ness of ~ 420 nm. With the same thickness, the w/o HI device 
only obtain maximum Jsc of 23.65 mA cm−2 and average Jsc 
of 22.74 mA cm−2, indicating the carriers diffusion length 
of w/o HI devices is shorter than w/HI ones.

The current density–voltage (J–V) characteristics of opti‑
mal w/HI and w/o HI devices are shown in Fig. 5b and the 
device parameters are summarized in inset table. The opti‑
mal w/HI‑PbS solar cell reaches a PCE of 10.78% (average 
value ~ 10.37%) with a Voc of 0.65 V, a Jsc of 25.26 mA cm−2, 
and an FF of 0.66, which is superior to the w/o‑based 
device with an optimal PCE of 9.56% (Voc = 0.62  V, 
Jsc = 24.48 mA cm−2, and FF = 0.63). The EQE of both 
devices are shown in Fig. 5c. At the 930–940 nm exciton 
peaks, w/HI devices reach 65%. On contrary, the control 
device value is just close to 53%. We consider this improve‑
ment related to suppression of the hydroxide species and 
enhancement of iodide passivation for w/HI films. The w/
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HI device shows narrower efficiency distribution, and their 
average efficiency is much higher than control devices. The 
statistic histograms of PCE for w/and w/o HI treated PbS‑
QDs solar cells are summarized in Fig. 5d. Device physical 
characterizations were further utilized to unfold the back‑
ground mechanism.

According to the J–V curve, the performance enhance‑
ment of w/HI PbS‑QDs‑based devices mainly came from 
the improvement in Voc and FF. In order to gain insight 
into the physical origins of the improvement performance, 
we firstly measured the temperature‑dependent J–V char‑
acteristics for generation‑recombination in these devices. 
By extrapolating the Voc to T = 0 K (Fig. 6a), the activa‑
tion energy [32, 33] of w/and w/o HI devices are 1.07 
and 1.02 eV, respectively. Both of them are less than the 
bandgap of PbS‑QDs (Eg ~ 1.36 eV), indicating obvious 
existence of interfacial recombination in these devices. 
And the activation energy value of w/HI device is slightly 
higher than that of the w/o HI devices, which is ascribed 

to the better passivation in the interface of ZnO and QDs. 
To investigate the recombination mechanisms of above 
two kinds of devices, the light‑intensity dependences of 
Jsc and Voc were measured to get the device ideality factor 
n [9, 32]. As shown in Fig. 6b, c, the slope of the plot for 
w/HI device is much lower (1.23 kT/q) than that of control 
device (1.59 kT/q), which indicate w/HI devices greatly 
reduced the trap‑assisted recombination [22, 32]. Hence, 
it can help to improve Voc and FF.

We further characterized charge‑transfer and recombina‑
tion kinetics in above two kinds of solar cells. We used tran‑
sient photovoltage decay under the open‑circuit condition to 
characterize solar cells. The extracted charge‑recombination 
lifetime (τr) of w/HI devices is substantially longer than that 
of control device (106 versus 73.8 μs) (Fig. 6d). In Fig. 6e, the 
obtained charge‑transport time of w/HI devices (τt ~ 2.82 μs) 
is shorter than the value of control one (τt ~ 4.23 μs), indicat‑
ing the faster photocarrier transport in w/HI devices. From 
Voc and Jsc transient decay dynamics, it concluded that both 
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interfacial and bulk qualities of w/HI devices were improved 
compared with control devices.

Based on above analyses, it demonstrated that HI treated 
PbS‑QDs suppressed the defects at ZnO/PbS‑QDs hetero‑
junction interface and QDs bulk layers. Capacitance–volt‑
age (C–V) profiling and deep‑level capacitance profiling 
(DLCP) measurements were carried out on these devices to 
investigate the related defect information. In general, C–V 
content includes responses from free carriers [34], defects in 
the bulk, and interfacial defects, while DLCP result is only 
sensitive to free carriers and bulk defects [33, 35]. Thus, the 
difference between NC–V (defect density calculated from C–V 
measurement) and NDLCP (defect density calculated from 
DLCP measurement) reflects defect density [33] at the ZnO/
PbS interface. As shown in Fig. 6f, the above two devices 
based DLCP curves are not overlapped and the value of w/
HI device is lower than w/o HI one. Combining C–V and 
DLCP measurements, we calculated the interfacial defect 
density as 4.07 × 1010 cm−2 in w/HI treated one, which was 
near three times lower than that in w/o HI treated device 
(1.35 × 1011 cm−2). In order to obtain the QD surface defect 
density of bulk PbS films, we carried out the DLCP meas‑
urement at low (150 K) and room temperature (300 K) (Fig. 

S10); the difference of doping density is bulk trap states [35, 
36]. The extracted surface defect concentration of bulk PbS 
films from w/HI device is ~ 1.5 × 1015 cm−3, which is three‑
fold lower than w/o HI PbS‑QDs device (~ 5×1015 cm−3). 
These results are in accordance with the results of TPV 
(Fig. 6d) and SCLC analysis (Fig. S11).

To confirm the above physical results and deduce the 
energy band structure, we built a one‑dimension model of 
optoelectronic device (Fig. 7a) that took into account the 
electron affinity of CQDs with w/and w/o HI treatments, 
absorption profiles, trap density, and carrier mobility refer‑
ring from our previously work [37, 38] or reported values 
from iodide‑passivated films [8] (Fig. S12 and Table S2). 
From these simulation results (Fig. 7b), here is showed simi‑
lar results with real w/o and w/HI devices. That is, the lower 
trap density of device would get the better performance. 
From the simulation results, HI additive could enhance the 
performances (Voc, Jsc, and FF) for PbS‑QDs devices by sup‑
pressing the detrimental effect of hydroxyl ligands. Based on 
the above conclusions, a schematic illustration of proposed 
photocarrier transport and transfer for w/o and w/HI devices 
were plotted as shown in Fig. 7c. For w/o HI‑based devices, 
the sub‑bandgap states induced by hydroxyl ligand would 
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trap the carriers and promote non‑radiative recombination, 
leading to lower Jsc and Voc. Those results confirmed the 
importance of removing hydroxyl and its detrimental effect 
in PbS‑QDs for achieving high efficiency photovoltaics.

As HI‑processed  PbI2‑PbS solar cells suppressed hydrox‑
yls and converted them with iodine passivation, which was 
expected to hold better stability. Thus, we measured the 
device ambient storing stability at room temperature. As 
shown in Fig. S13a, w/HI devices could keep ~ 60% of their 
original PCE after 1500 min under illumination, which were 
much better than w/o devices (~ 40% after 1500 min). The 
main performance decays were from the loss of Jsc and FF 
(Fig. S13b‑d), which may be degraded by oxidation effects 
[2, 11]. For higher HI concentration (50%)‑processed‑PbS 
solar cells, they decayed more seriously to 50% of their ini‑
tial PCE only after 60 min illumination. This fast degrada‑
tion was mainly caused by overtreatment by HI, leading to 
the fusion or etching in PbS‑QDs, which led to be more 

sensitive to ambient atmosphere. It also indicated that the 
amount of additive HI needs to be precise controlled.

Compared with previous work by Jo et al. [31], the moti‑
vation and key finding of them are different to ours. They 
mostly focused on large‑diameter (4–6 nm, Eg < 1.1 eV) 
CQDs for harvest energy in the infrared region of the solar 
spectrum. They employed the hydroiodic acid in order to 
increase the chemical reactivity to facilitate high CQD 
packing and passivation for large size infrared CQDs (IR‑
QDs). Our work focused on the improved performance for 
wider‑bandgap CQDs whose bandgaps were within the 
range of 1.3–1.5 eV, closed to the idea band gap for single 
junction solar cell. In our case, it is not the key problem to 
remove the oleate ligand after solution‑processed ligand‑
exchange method referring from our FT‑IR spectra. And 
the wider‑bandgap CQDs of ours used for single junction 
solar cells focused on the elimination for sub‑bandgap states 
and improvement in passivation. Therefore, we paid more 
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attention about device physics characterization to know 
about the mechanism of hydroxyl ligand to PbS‑QDs solar 
cell performance. Meanwhile, we extracted the optimal rec‑
ipe for hydroxyl removal treatment. In general, the reported 
work [31] and ours focused on different motivations and 
different size QD for harvesting different region of the solar 
spectrum. And these two works can hold the complementary 
role for each other.

4  Conclusions

In summary, we demonstrated a halide ligand additive strat‑
egy to suppress hydroxyl ligands and convert them with 
iodine ligand passivation. The approach allowed the halide 
acid, HI, to access target Pb‑OH bonding based on a depro‑
tonation reaction between HI additive and hydroxyl ligands. 
Utilizing optimal concentration HI treatment, QDs could 
obtain higher I/Pb ratio (0.75:1) with improved passivation 
on QDs surface. Such treatment strategy promised thicker 
absorber layer with higher mobility of carriers in solar cells, 
delivering a PCE of 10.78%. Systematic physical analyses 
to the improvement mechanism were originated from the 
suppression of interfacial and bulk defect density. Thus, the 
device Voc and FF could be significantly improved as well 
as the device stability. The present ingenious strategy was 
expected to continuously promote PbS‑QDs ink technology, 
and also be applicable for other CQD‑based optoelectronic 
devices.
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