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HIGHLIGHTS

• Various forms of carbon nanomaterials are selected as substrates to clear the mist in understanding the reactivity/utility of ferrate(VI) 
in oxidizing carbon nanomaterials.

• It unravels a modest reactivity of ferrate(VI) in liquid phase that only oxidizes the active defects on carbon surface and a powerful 
oxidizing ability in solid state that can open the inert C=C bonds in carbon lattice.

• Respective benefit and limitation of the wet and dry approaches using ferrate(VI) in functionalizing carbon nanomaterials are discussed.

ABSTRACT As a high‑valent iron compound 
with Fe in the highest accessible oxidation state, 
ferrate(VI) brings unique opportunities for a num‑
ber of areas where chemical oxidation is essential. 
Recently, it is emerging as a novel oxidizing agent 
for materials chemistry, especially for the oxidation 
of carbon materials. However, the reported reactiv‑
ity in liquid phase  (H2SO4 medium) is confusing, 
which ranges from aggressive to moderate, and 
even incompetent. Meanwhile, the solid‑state reac‑
tivity underlying the “dry” chemistry of ferrate(VI) 
remains poorly understood. Herein, we scrutinize 
the reactivity of  K2FeO4 using fullerene  C60 and 
various nanocarbons as substrates. The results 
unravel a modest reactivity in liquid phase that only 
oxidizes the active defects on carbon surface and 
a powerful oxidizing ability in solid state that can 
open the inert C=C bonds in carbon lattice. We also discuss respective benefit and limitation of the wet and dry approaches. Our work 
provides a rational understanding on the oxidizing ability of ferrate(VI) and can guide its application in functionalization/transformation 
of carbons and also other kinds of materials.
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1 Introduction

Nature utilizes  FeIV =O and  FeV=O complexes as the 
active centers for a number of important enzymatic oxi‑
dations, which motivates many fundamental studies on 
the properties of high‑valent iron compounds, especially 
their chemical and biological reactivities [1–8].  FeVI, the 
highest accessible oxidation level of iron, generally exists 
in the form of ferrate(VI) ion  (FeO4

2−) with four  FeVI=O 
bonds. Ferrate(VI) possesses powerful oxidizing ability, 
as revealed by its higher redox potentials (up to + 2.2 V in 
acidic conditions) than those of most traditional oxidants 
[9–12]. Together with the environmentally benign nature, 
ferrate(VI) compounds (commonly  K2FeO4) have been 
considered as promising oxidizing agents in several areas, 
including water remediation [13–17], organic synthesis 
[18–21], high‑capacity battery [22–24] and  O2 evolution 
[25–29].

Recent years have witnessed an emerging role 
of ferrate(VI) in materials science [30–34], where 
ferrate(VI)‑enabled oxidative functionalization/transfor‑
mation of a target material is a key step toward functional 
applications. Of particular interest is the oxidation treat‑
ment of carbon materials [35–41]. Peng et al. [35] reported 
the first example of applying  K2FeO4 for the oxidation/
exfoliation of graphite in concentrated  H2SO4. Highly 
water‑soluble single‑layer graphene oxide was produced 
in 1 h at room temperature, which indicated the extraordi‑
nary oxidizing ability of  K2FeO4 in  H2SO4 medium. But 
soon after, Sofer and coworkers [36] provided completely 
opposite results, showing such liquid‑phase oxidation was 
impossible for graphite, attributed to the extreme instabil‑
ity of  K2FeO4 in acidic environments. Nevertheless, some 
other studies suggested the moderate oxidation effects of 
 K2FeO4 by the production of graphite/graphene oxides 
with relatively low degrees of oxidation [37, 38] and by 
the result of nondestructive oxidation of carbon nano‑
tubes (CNTs) [39]. Therefore, the reactivity of  K2FeO4 in 
liquid phase (i.e.,  H2SO4 medium) remains confusing in 
oxidizing carbon materials, which ranges from aggressive 
to moderate, and even incompetent (see Table S1 for a 
comparison of the literature results).

Oxidations by ferrate(VI) under solvent‑free condition 
provide an alternative and green way for harnessing its 
oxidizing power. Very recently, our group discovered that 

the intrinsic high reactivity of  K2FeO4 was accessible in 
the “dry” solid state by oxidizing small‑molecule sub‑
strates [42]. On this basis,  K2FeO4 solids were applied 
for the oxidation of CNTs under mechanical milling, and 
effective surface functionalization was achieved. However, 
the dry chemistry of ferrate(VI) is still poorly understood 
and the mechanism of  K2FeO4 oxidation on carbon materi‑
als remains unclear. A critical question is whether  K2FeO4 
is reactive enough to open the inert C=C bonds in carbon 
lattices.

Herein, we scrutinize the reactivity of ferrate(VI) in 
liquid phase and solid state using various forms of carbon 
materials as substrates, as depicted in Fig. 1. Fullerene  C60 
is selected as a probe molecule, and four typical nanocar‑
bons with diverse physical structures and different defect 
degrees are further used to test the reactivity. Our system‑
atic results provide a rational understanding on the perfor‑
mance of this attractive oxidizer in materials chemistry.

2  Experimental Section

2.1  Preparation of  K2FeO4

The purity of  K2FeO4 should be examined before it is 
used for oxidizing carbon materials. The commercially 
supplied  K2FeO4 products from several manufactures 
only have actual purities of 20% or below, although the 
declared purities are > 90%. Therefore, we synthesized 
 K2FeO4 according to the literature [43] and purified them 
by recrystallization as described in our previous work [42]. 
Preparation details were provided in Supporting Informa‑
tion (SI).

2.2  Oxidation of Carbon Materials

2.2.1  Liquid‑Phase  K2FeO4 Oxidation

Oxidation of  C60. 30  mg of  C60 was slowly added to 
20.0 mL of sulfuric acid (95–98%) in a 50‑mL two‑necked 
flask under argon atmosphere, and the dispersion was soni‑
cated for 30 min. Then 2.5 g of  K2FeO4 was slowly added 
to the flask under argon flow at 0 °C, and the reaction mix‑
ture was stirred at 60 °C for 12 h. The resulting dispersion 
was diluted in 500 mL of cold water and stirred for 30 min. 
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The solid was obtained by centrifugation (12,000 rpm), 
followed by washing in sequence with 2 M HCl (several 
times to remove  Fe3+), ultrapure water (18.2 MΩ cm) and 
ethanol. The product was finally dried at 60 °C in a vac‑
uum oven.

Liquid‑phase oxidation treatments of other carbon materi‑
als were described in SI.

2.2.2  Solid‑State  K2FeO4 Oxidation

Oxidation of  C60. 100 mg of  C60 and 2.5 g of  K2FeO4 were 
mixed together by brief grinding in an agate mortar. The 
mixture was then introduced into a 50‑mL stainless milling 
jar together with 26 g of 5‑mm‑diameter stainless steel balls 
(ball‑to‑powder weight ratio 10:1). Ball milling was per‑
formed at a rotational speed of 250 rpm for 6 h or 180 rpm 
for 2 h in a horizontal planetary ball milling (WXQM‑2L, 
Tecan Powder). The jar was opened every 30 min to break up 
the mixture materials if they were agglomerated or adhered 
to the sidewall during milling process. The obtained solid 
was washed by centrifugation (12,000 rpm) in sequence with 

2 M HCl (several times to remove  Fe3+), ultrapure water 
(18.2 MΩ cm) and ethanol. The product was finally dried at 
60 °C in a vacuum oven.

Solid‑state oxidation treatments of other carbon materials 
were described in SI.

2.3  Characterization

The purity of  K2FeO4 sample was tested by spectrophotom‑
etry, X‑ray diffraction (XRD) and 57Fe Mössbauer spectros‑
copy (57Co(Pd) source). Chemical structure of  C60 samples 
was determined using matrix‑assisted laser desorption/ioniza‑
tion Fourier transform ion cyclotron resonance mass spectrum 
(MALDI‑FTICR MS) and 1H NMR (400 MHz). Oxidation 
degrees of carbon materials were analyzed using X‑ray photo‑
electron spectroscopy (XPS, binding energies were calibrated 
with respect to C 1s peak at 284.6 eV) and thermogravimetry 
(TG, 10 °C min−1,  N2). Defect degree and morphology were 
characterized by Raman spectra, scanning electron micros‑
copy and transmission electron microscopy (SEM and TEM). 
Details of instruments and test conditions were described in SI.
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Fig. 1  a A schematic representation of  K2FeO4–carbon reaction system. b Depiction of two reaction conditions (in  H2SO4 medium or by solid‑
state ball milling). c Structural models of the carbon nanomaterials used in this study:  C60, defective CNT (DCNT), graphitized CNT (GCNT), 
defective and graphitized carbon nanofibers (DCNF and GCNF). ID/IG refers to the relative intensity of D to G band in Raman spectrum, taken 
as a measure of defect degree
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3  Results and Discussion

3.1  Purity Analysis of  K2FeO4

K2FeO4 oxidizer used in our experiments has a purity of 
95%, as determined by spectrophotometry. XRD pattern con‑
firmed single‑phase character of the solid (Fig. S1), and the 
57Fe Mössbauer spectrum proved 97.6% relative content of 
ferrate(VI) (Fig. S2, Table S2).

3.2  Probing the Reactivity Using  C60 Molecules

We first probed the reactivity of  K2FeO4 using  C60. As a 
special kind of carbon material with defined molecular 
structure,  C60 can provide directive and reliable assessment 
results. The spherical cage of  C60 confers an excess of strain 
to C=C bonds, inducing a unique  sp2.28 hybridization of the 
carbon atoms with a pyramidalization angle θP of 11.6° [44, 
45]. This endows  C60 with a moderate reactivity: inerter than 
that of the  sp3‑C atoms (θP = 19.5°) appearing as defects on 
carbon surface and more active than that of the  sp2‑C atoms 
with smaller θPs in graphite (θP = 0°) and most other carbon 
materials (e.g., CNTs and CNFs) [46]. In addition, the small‑
molecule property of  C60 allows its product structure to be 
easily determined by standard organic analytical methods 
such as mass and NMR spectroscopy.

After the liquid‑phase oxidation,  C60 products showed 
scarcely any changes with respect to the pristine sample, 
even with a large excess of  K2FeO4 (ca. 300 mol equivalent) 
and long reaction time (up to 12 h). They displayed black 
color, poor water dispersibility and good solubility in tolu‑
ene (Fig. 2b inset). The product structure was determined by 
MALDI‑FTICR mass spectrometry (MS). Except from the 
prominent peak at m/z 720.000 (intact  C60 ions), no newly 
produced ion peaks were observed (Fig. S3), which unam‑
biguously showed  K2FeO4 in liquid phase was not reactive 
enough to oxidize  C60.

In contrast,  K2FeO4 efficiently oxidized  C60 in the “dry” 
way. By only 1 ~ 2‑h treatment, the majority of products 
became hydrophilic, yielding a thick dark‑brown aqueous 
layer after phase separation with toluene (Fig. 2b inset), 
which was ascribed to the generation of oxygen‑containing 
groups. With prolonged reaction time, the purple tolu‑
ene layer faded and the aqueous phase gradually became 

yellowish transparent, indicating continuous oxidative 
transformation and increasing oxidation degree [47]. The 
product MS showed many ion clusters above m/z 720.004, 
clearly separated by multiples of 16 (O) and 17 (OH) mass 
units. Various oxidized species were identified, including 
 C60O (736.000),  C60O2H (753.003),  C60O3H (768.998) and 
 C60O11H17 (913.078). The attachment of –OH groups onto 
 C60 cage was also confirmed by 1H NMR (Fig. S4).

The oxidation treatment not only introduced oxygen and 
hydroxy entities to  C60 cages, but also gave rise to cage‑
opened products such as  C59O9H13 (865.057),  C53O15H18 
(894.063) and  C41O25H49 (941.248). We suspected it was 
the mechanical force that broke the molecular cages, but 
the production of these broken cages was not remarkably 
depressed (62% vs. 50%, relative quantifications by MS) 
when the energy input was substantially decreased (from 
250 rpm × 6 h to 180 rpm × 2 h). On the other hand, when 
 K2FeO4 was replaced by a non‑oxidizing isomorphous 
salt  K2SO4, the amount of cage‑opened products was dra‑
matically reduced (20% by  K2SO4 vs. 62% by  K2FeO4, 
250 rpm × 6 h). These results suggested that the intrinsic 
reactivity of  K2FeO4 in solid state was strong enough to 
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Fig. 2  a Comparison of  C60 oxidation results by  K2FeO4 in liquid 
phase and solid state. b MS of oxidized  C60 products by 6‑h solid‑
state reaction (ball milling at 250  rpm). Inset shows photographs of 
 C60 samples in toluene–water biphasic system. L12 refers to the prod‑
uct by 12‑h liquid‑phase treatment, and S1–6 refers to that by solid‑
state reaction for 1–6 h
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cleave the C=C bonds of  C60 (presumably by the addition 
of  FeVI=O with C=C bonds).

Based on the results provided by  C60 probe, it is clear 
that: (1)  K2FeO4 in  H2SO4 environment can hardly attack the 
sp2.28‑C of strained C=C bonds. As a reasonable inference, it 
would not be able to oxidize the C=C bonds that are inerter 
in most carbon materials (such as the graphite in debate); 
(2)  K2FeO4 in solid state can open the strained C=C bonds 
and even consume the C atoms in the skeleton. Therefore, 
the active defective sites on carbon surface could be readily 
oxidized by such dry chemistry, as has been observed in our 
previous work on DCNT functionalization [42].

3.3  Further Testing the Reactivity Using Nanocarbons

It is still uncertain whether (1) the liquid‑phase  K2FeO4 takes 
effect in the oxidation of active defects and (2) solid‑state 
 K2FeO4 is oxidizing enough for less strained C=C bonds. To 
address these issues, the reactivity of  K2FeO4 was further 
determined using nanocarbons including CNTs and CNFs, 
in both defective and graphitized types (Figs. 1c, S5 and 
S12). Specifically, DCNT contains rich numbers of surface 
defects (adatoms, vacancies, cracks, etc.) [48], exhibiting an 
ID/IG ratio of up to 1.84, while GCNT has a well‑graphitized, 
nearly defectless surface [49–51] with a very low ID/IG of 
0.028. DCNF is made of stacked graphene “cups” exposing 
large amounts of edge sites on the outer shells [52, 53] giv‑
ing a high ID/IG of 1.84, while GCNF, constructed by close 
packing of carbon rods, features edge‑closed loops formed 
by high‑temperature graphitization [54] with a much lower 
ID/IG of 0.33.

3.3.1  K2FeO4 in Liquid Phase Could Only Oxidize 
Surface Defects

The oxidizing ability of  K2FeO4 in liquid phase was found 
to be modest: the oxidation was efficient to the defective 
nanocarbons while inoperative to the graphitized ones. To be 
specific, DCNTs treated by  K2FeO4/H2SO4 for 2 h showed 
good aqueous dispersibility, in contrast to the insoluble raw 
material (Fig. 3a). The surface O/C ratio (detected by XPS) 
showed an increase from 3.5% (raw) to 9.1% (2 h) (Fig. 3b). 
In addition, TG weight loss (Fig. 3c), originated from ther‑
molysis of functional groups on surfaces, also supported the 
increased oxygen content on 2‑h‑treated DCNTs. However, 

GCNTs after treatment (up to 8 h) showed properties that 
were substantially unchanged compared to the raw material, 
including poor water dispersibility, few contents of surface 
oxygen and low levels of TG weight loss (Fig. 3a‑c). The 
results of CNFs treated by  K2FeO4 followed a similar trend 
with those of CNTs (Fig. 3a, e, f). Note that 8‑h‑treated 
GCNFs displayed distinguishable oxidation effects, since 
the so‑called graphitized CNFs actually contained a certain 
number of defects in view of the ID/IG of 0.33.

The above results suggested that liquid‑phase oxidation 
by  K2FeO4 could only occur at the original defects on car‑
bon materials. Raman spectra further confirmed that addi‑
tional defects (which would arise from the reactions on C=C 
bonds) were not produced during the reaction process, as 
reflected by the almost unchanged ID/IG values for both 
unoxidized nanocarbons and the oxidatively modified ones 
(Fig. 3d, g). As a result, carbon nanomaterials were pro‑
tected from structural damage during the oxidation treat‑
ment, as shown by SEM and TEM images in Figs. 4 and 
S5. These results supported the nondestructive oxidation of 
CNTs reported by Zhang and Xu [39].

According to the reactivity clarified above,  K2FeO4 in 
 H2SO4 medium can only provide a slight oxidizing effect on 
graphite, which arises from reactions at the edge sites of gra‑
phene sheets, and the basal planes are unlikely to be affected. 
This explains why  K2FeO4/H2SO4 method is unsuitable for 
preparing graphene oxide as pointed out by Sofer et al. [36]. 
On the other hand, when bulk graphite sample was replaced 
by nanographite platelets with high ratio of edge‑to‑plane 
sites (Fig. S6), distinct oxidizing effects were observed: the 
surface O/C ratio was increased to 6.8% with discernible 
‑COOH peak in C 1s spectrum after 8‑h treatment (Fig. S7), 
which manifested again the ability of  K2FeO4 to oxidize the 
defective sites on carbon surface.

3.3.2  K2FeO4 in Solid State Could Open the Inert C=C 
Bonds

K2FeO4 in solid state was able to oxidize not only the defec‑
tive nanocarbons but also the graphitized ones. For nanocar‑
bons which got negligible oxidation in liquid phase, effective 
oxidative modifications were achieved in the solid state; and 
in cases when liquid‑phase oxidation was successful, the 
solid‑state reactions would provide higher levels of oxida‑
tion (Fig. 3, Table S4). Such strong oxidizing effect can be 
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interpreted as the ability to open the inert C=C bonds in 
carbon lattice, as indicated by the evidently increased ID/IG 
values after solid‑state oxidations (Fig. 3d, g).

To figure out whether the bond breakage is merely a result 
of physical effect by ball milling or contributed from the 
chemical reactivity of  K2FeO4 solids, two isomorphous salts, 
non‑oxidizing  K2SO4 and weakly oxidizing  K2CrO4, were 
also used in the dry reaction system for comparison. We 
used a mild ball milling condition of 250 rpm as suggested 
by the  C60 experiments, and the nearly defectless GCNTs 
were taken as substrate. As displayed in Fig. 5, GCNTs dur‑
ing ball milling with  K2SO4 showed gentle increase in the 
defect content with time (ID/IG only increased 0.025 after 
12 h), which was reasonably induced by mechanical force. 
 K2CrO4 treatment had a comparable effect with slightly 
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Fig. 4  SEM images of carbon nanomaterials under different reaction conditions. a–d DCNTs: a raw, b L2, c S2 at 250 rpm, d S2 at 300 rpm; 
e–h GCNTs: e raw, f L8, g S8 at 250 rpm, h S8 at 300 rpm; i-l DCNFs: i raw, j L2, k S2 at 100 rpm, l S2 at 250 rpm; m-p GCNFs: m raw, n L8, 
o S2 at 100 rpm, p S12 at 100 rpm

0.10

0.08

0.06

0.04

0.02

R
am

an
 I D

/I G

0 2 4 6 8 10 12

K2SO4

K2CrO4

K2FeO4

Reaction time (h)
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with three isomorphous salts. A comparison of Raman spectra is 
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more defects at long reaction times. In contrast,  K2FeO4 led 
to efficient introduction of defects, producing much higher 
defect degrees than the other two salts at the same condition. 
Therefore,  K2FeO4 solids possessed sufficient oxidizing abil‑
ity to directly open the inert C=C bonds under the mechano‑
chemical conditions. It was no surprise that  C60 cages were 
easily damaged by such dry oxidation.

3.4  Discussion

Our systematic studies using elaborately selected carbon 
materials clearly reveal two distinct oxidizing activities of 
ferrate(VI) depending on the reaction environment. Their 
different oxidation effects on four nanocarbons are depicted 
in Fig. 3h.

Liquid‑phase oxidation only works for the defective sites, 
which means the reactivity of ferrate(VI) is largely depressed 
in  H2SO4 medium and becomes much weaker than that of 
the commonly used oxidizers (e.g.,  KMnO4 and  HNO3) for 
carbon materials. Such modest reactivity limits its scope of 
application, but may be desirable for functionalizing defec‑
tive carbon materials, where effective surface oxidation can 
be achieved with no risk of disturbing the carbon structure 
or morphology.

In solid state, ferrate(VI) readily oxidizes the surface 
defects and its oxidizing power is strong enough to break 
the inert C=C bonds in carbon lattice. Solid‑state ferrate(VI) 
oxidation is thus generally applicable for introducing oxy‑
genated groups (e.g., −COOH) onto various carbon surface. 
In addition, the mechanical force involved in reaction can 
favor the oxidation performance by producing more defects. 
On the other hand, the mechanochemical conditions (e.g., 
rotation speed, ball type and time) must be optimized to 
avoid undesired structural damage, especially for fragile 
materials like CNFs (see Figs. 4 and S8–S11 for detailed 
studies on the effect of reaction condition on product 
structure).

4  Conclusions

By using molecular and nanoforms of carbon as substrates, 
we unraveled the reactivity of ferrate(VI) in oxidizing car‑
bon materials. The theoretically strong oxidizing power of 
ferrate(VI) is largely depressed in  H2SO4 medium, yielding 
a modest reactivity that only oxidizes the active defects on 

carbon surface. This liquid‑phase ferrate(VI) oxidation can 
be used as a gentle approach to functionalizing defect‑rich 
carbon materials with the advantage of protecting struc‑
tural integrity. Ferrate(VI) in solid state releases a high 
oxidizing power that is capable of opening the inert C=C 
bonds in carbon lattice, making it generally applicable to 
introduce oxygenated groups to various carbon materials. 
This intrinsic strong reactivity underlies the dry chemis‑
try of ferrate(VI) and implies its wide scope of applica‑
tions in green and powerful oxidative functionalization/
transformation.

These two distinct oxidizing abilities could also apply to 
other kinds of materials. Considering the emerging role of 
high‑valent iron compounds (represented by ferrate(VI)) in 
materials science, understanding their reactivity in different 
conditions is of fundamental importance for guiding their 
applications.
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