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HIGHLIGHTS

• Eugenol (4-allyl-2-methoxyphenol) extracted from O. sanctum leaves is used as a natural reducing agent for the synthesis of CuO 
nanoflowers (NFs).

• CuO-NFs can degrade methylene blue with an efficiency of 90%.

• CuO-NFs offer a new vision to deactivate multi-drug microorganisms.

A B S T R AC T  C o p -
per oxide nanoflowers 
(CuO-NFs) have been 
synthesized through a 
novel green route using 
Tulsi leaves-extracted 
eugenol (4-allyl-2-meth-
oxyphenol) as reducing 
agent. Characterizations 
results reveal the growth 
of crystalline single-
phase CuO-NFs with 
monoclinic structure. 
The prepared CuO-NFs 
can effectively degrade 
methylene blue with 
90% efficiency. They 
also show strong barrier 
against E. coli (27 ± 2 mm) at the concentration of 100 µg mL−1, while at the concentration of 25 µg mL−1 weak barrier has been found 
against all examined bacterial organisms. The results provide important evidence that CuO-NFs have sustainable performance in methylene 
blue degradation as well as bacterial organisms.
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1 Introduction

The micro-/nanostructure studies demand a better under-
standing of crystal facet engineering with tailored archi-
tecture that can be attained by the new design and facile 
synthesis methods [1–3]. In the past few decades, cupric 
oxide (CuO) is intensively studied binary transition metal 
oxide [4]. CuO nanostructures with large surface areas and 
potential size-effects possess superior physical and chemical 
properties that remarkably differ from those of their micro- 
or bulk counterparts [5]. It has excellent architectures with 
different shapes and dimensions, such as zero-dimensional 
(0D) nanoparticles, one-dimensional (1D) nanotubes, 1D 
nanowires/rods, two-dimensional (2D) nanoplates, 2D 
nanolayers as well as several complex three-dimensional 
(3D) nanoflowers, urchin-like and spherical-like nanostruc-
tures [6, 7]. These nanostructures have been extensively used 
in various applications such as solar cells [8], photodetectors 
[9], field emissions [10], lithium-ion batteries (LIBs) [11], 
magnetic storage media [12], energetic materials [12], elec-
trochemical sensors/bio-sensors [13], supercapacitors [14], 
nanofluid [15], removal of inorganic pollutants [16], photo-
catalysis [17], and so on. In addition, the complex geometry 
of ordered self-assembly of CuO nano/microscale building 
blocks is a hot topic in recent materials research [4]. Several 
important innovations have been directed toward the produc-
tion of CuO, out of which many of them involve complex-
ity of chemical reactions and problems associated with the 
reproducibility [1].

Thus, an alternative, environmentally approachable 
method is required. Green route-assisted CuO nanostructures 
have been recognized as a technologically imperative mate-
rial with its several applications in the fields of cutting-edge 
science and technology [18]. The consumption of plants in 
the biosynthesis of CuO-NPs involves the content of sec-
ondary metabolites as reducing agents [19]. Apparently, 
biological agents act as reducers, stabilizers, or both in the 
process of making nanoparticles [20]. Several approaches for 
CuO synthesis and surface modification have been proposed 
through utilizing various parts of plants such as leaves, fruit, 
and flowers [21–24]. Several microorganisms, plants, and 
plant extracts have been extensively used to synthesize CuO 
nanoparticles (Table 1) to avoid the consumption of toxic 
chemicals [20–38]. The O. sanctum (Tulsi) is supposed to 
contain oleanolic acid, rosmarinic acid, eugenol, carvacrol, 

Linalool, β-caryophyllene, and ursolic acid [39–42]. The 
oil  extracted from O. sanctum leaves contains a higher 
amount of eugenol with the balance presence of numerous 
trace compounds, typically terpenes [43]. O. sanctum is a 
small herb that is seen all over India and extremely used in 
medicinal purpose. It is also known as phytomedicine plant 
and has been recognized as owning antioxidant, antimicro-
bial properties and non-toxicity [44], which has encouraged 
us to perform the current investigations.

CuO nanoparticles synthesized using leaf extracts had 
shown good photocatalytic efficiency against methylene 
blue (MB) dye [45–47]. Moreover, Sreeju [48] had reported 
that the CuO-NPs are effective against bacteria killing. Bio-
synthesized CuO nanoparticles exhibit good antibacterial 
property for both gram-positive and gram-negative microbes 
[35]. These reports reveal that the green chemistry-assisted 
CuO nanoparticles are highly promising candidates for pho-
tocatalytic as well as antimicrobial activity. However, to the 
best of author’s knowledge, there have been no reports on a 
complete investigation of the photocatalytic and antibacterial 
properties of O. sanctum (Tulsi)-extracted Eugenol (4-allyl-
2-methoxyphenol)-assisted CuO-NPs. Thus, the aim of the 
present work is to synthesize CuO nanostructures using 
eugenol extracted from O. sanctum leaves (the detailed euge-
nol isolation procedures are shown in Electronic Supporting 
Information (ESI)), and the obtained product was evaluated 
for the photocatalytic activity against the organic dye (meth-
ylene blue) for water rectification and bacteria killing.

2  Experimental Details

All the details such as the extraction of eugenol from O. 
sanctum leaves, synthesis of copper oxide nanostructures, 
characterizations, and photocatalytic and antibacterial meas-
urements are reported in ESI.

3  Results and Discussion

3.1  Synthesis Mechanism and Morphological Analysis

The plant extracts derived from various plants as shown in 
Table 1 have been reported for CuO-NSs synthesis by the 
green approach. It is well known that the most preferred 
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green approach method is bio-reduction that includes the 
reaction between the biologically active produces isolated 
from plants with CuO in the reduced state [49]. In view 
of those ideas, we have chosen O. sanctum (Tulsi) leaf for 
the extraction of eugenol as a capping agent well as a sta-
bilizing agent. In the beginning stage experiment, we have 
used the steam distillation setup to isolate eugenol oil from 
O. sanctum leaf extract, the mass of product isolated from 
O. sanctum leaf extract was examined through gas chroma-
tography–mass spectrometry and confirmed the isolated 
product is 4-allyl-2-methoxyphenol (eugenol) (Fig. S1). 
The eugenol has a phenylpropene and an allyl chain-sub-
stituted guaiacol [40] and six reaction sites (acts as a hex-
adentate ligand) to form  Cu2+ ion complex [50]. Based on 
the above assumptions and using the Job’s method, we have 
explained the possible growth mechanism schematically 
as shown in Fig. 1a. The  OH− ions coordinate with  Cu2+ 
ions and control the reaction process under alkaline condi-
tions, leading to nucleation and hence the growth of CuO 
micellar structures [51]. These structures form a network 
with each other through van der Waals forces and hydrogen 
bonding resulting in the formation of observed geometry. 
From the examination of eugenol structure we have found, 

it had replaceable hydrogen and a neighboring donor in the 
oxygen of the o-methoxy group [52] and generally shares 
two eugenol molecules to one copper in the formation of 
Cu2+(eugenol)

−

2 complex [53]. This process is led by the active 
reduction of  Cu2+ ions through acid–base reactions and fol-
lowed by nanoparticle formation, presented as Eqs. 1 and 2:

As the time elapses, few free molecules in the reaction 
mixture start to redeposit on the faintly larger particles to 
attain a thermodynamically stable state [4]. This condition 
leads to the complete exhaustion of the smaller particulates, 
further resulting in a large flower-like shape. The evolu-
tion of the flower-shaped CuO-NSs is believed to be the 
result of eugenol capping, and the growth mechanism can 
also be understood through the microstructural investiga-
tion. The FESEM image for surface morphology of CuO 
flower-shaped structures is shown in Fig. 1a (magnification 
10.0 k×, scale 2 μm). It was clearly seen that the flower-
shaped branches of the single product grow in different 
directions and are formed in large quantity with almost uni-
form sizes. The rich assessment of the single flower-shaped 
structure is illustrated in the inset of Fig. 1c, which exposes 

(1)Cu2+(eugenol)
−

2 + H2O → Cu(OH)2 + 2(H − eugenol)

(2)Cu(OH)2 + 2(H − eugenol)Δ
→

CuO + 2(H − eugenol)

Table 1  Copper oxide nanoparticles prepared in Plant Extracts by chemical reduction methods [21–38]

Stabilizing agent Parts used Precursor Size (nm) Particle shape References

Calotropis gigantea Leaves Cu(NO3)2 ~ 20 Spherical [21]
Theobroma cacao Leaves CuCl2 ~ 40 Spherical [22]
Andean blackberry (Rubus glaucus Benth.) Fruit/leaf Cu(NO3)2·3H2O 43.3/52.5 Spherical [23]
Azadirachta indica, Hibiscus rosa-sinensis, Murraya 

koenigii, Moringa oleifera and Tamarindus indica
Leaves Cu(OAc)2 ~ 12 Spherical [24]

Cissus quadrangularis Leaves Cu (OAc)2 30–33 Spherical [25]
Gloriosa superba Leaves Cu(NO3)2 5–10 Spherical [26]
Bauhinia tomentosa Leaves CuSO4 22–40 Spherical [27]
Caloropis procera Leaves Cupric acetate ~ 46 Spherical [28]
Rosa canina Fruit Cu(CH3COO)2 15–25 Spherical [29]
Catharanthus Roseus Leaves CuSO4, PEG 5–10 Spherical [30]
Seidlitzia rosmarinus Plant Cu(CH3COO)2 ~ 222 Cauliflower [31]
Chamomile Flower Cu(NO3)2·3H2O ~ 140 Spherical [32]
Cordia sebestena (C. sebestena) Flower Cu(NO3)2·3H2O 20–35 Clusters [33]
Callistemon viminalis Leaves CuSO4 3.8–42.4 Nanoparticles [34]
Thymus vulgaris L. Leaves CuCl2.2H2O <30 Spherical [35]
Anthemis nobilis Flowers CuCl2 40–50 Spherical [36]
Gundelia tournefortii Leaves CuCl2 50–60 Spherical [37]
O. sanctum Leaves CuSO4.5H2O ~ 77 – [38]
O. sanctum Leaves Cu(CH3COO)2 50 nm Nanoflower, this work
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that the flowers comprise several triangular-shaped petals. 
The diameters of the petals are different from the roots to the 
tips (i.e., display sharpened tips with the broader roots). The 
broader roots of the petals are associated with each other, 
fixed in one center and in conclusion built a lovely flower-
like morphology. The single petal length is approximately 
150–200 nm with a diameter of around 50–30 nm at their 

roots, and tips are about 20–30 nm. A complete one-flower-
shaped structure is ~ 250 nm in range, and had spectral sig-
nal of elemental oxygen and copper ions only in EDX analy-
sis (Fig. 1d). The petal of the flower-shaped structures is a 
buildup of some thousands of tiny particles as displayed by 
transmission electron microscopy (TEM) images (Fig. 1e) 
which validate the results observed in the FESEM. Figure 1f 
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Fig. 1  a, b Tentative mechanism of crystal growth through copper–eugenol complex process. c FESEM images of eugenol-assisted CuO nano-
flowers with different magnifications. d EDX spectrum. e TEM image, and f SAED pattern of eugenol-assisted CuO nanoflowers. (Color figure 
online)
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shows the SAED pattern of the circled portion of single petal 
shown in Fig. 1e. The bright spots reveal that the made pet-
als have crystalline features [54, 55].

3.2  Structural and Optical Analysis

The crystallographic phase of the as-prepared flower-shaped 
CuO-NSs was investigated via powder (D8 advance) X-ray 
diffraction pattern (XRD) technique. Rietveld analysis of 
XRD pattern is shown in Fig. 2a. Refinement was under-
taken in space group C6

2h, C2/C for monoclinic CuO with 
all atoms in general positions [57, 58]. The marked (110), 
(002), ( ̄1 11), (111), (200), (11 2̄ ), (20 2̄ ), (112), (020), (021), 
(022), (11 3̄ ), (113), (310), (113), and (220) hkl diffraction 
planes (│standing line for Bragg position θ) are well indexed 
to standard CuO (JCPDS card No. 48-1548). The three-
dimensional view of the flower-shaped CuO-NSs crystal is 
built with the help of VESTA software as a depicted inset 
in Fig. 2a.

After numerous recursive refinements, the possible best-
refined lattice parameters obtained are as follows (weighted 
profile factor (Rwp) = 12.3, profile factor (Rp) = 11.9, 
expected R-factor (Rexp) = 7.8, Bragg R-factor (RBragg) = 7.02, 
goodness of fit (GOF) = 1.03 and χ2 = 1.48) with unit cell 
parameters a = 4.6878 Ǻ, b = 3.4269 Ǻ, and c = 5.14567 Ǻ, 
and crystallite size ~ 15.7 nm, by using Scherrer’s formula 
[56]. Additionally, refinement data (solid line) are in good 
agreement with experimental (● circle) data as the differ-
ence between these two is very less without any variations 
(solid line). Thus, the formation of CuO phase is predomi-
nant in the prepared sample.

To further support and clarify the crystallographic infor-
mation, Raman spectroscopy was performed on the prepared 
sample (Fig. 2b). The spectrum was taken at 533 nm exci-
tation wavelength with He–Ne laser at room temperature 
(RT). The peak located at 277.3 cm−1 is assigned to be  Ag 
mode at high frequency, which corresponds to the in-phase/
out rotation of the Cu and O atoms in the monoclinic phase 
[44]. The occurrence of the Bg

1 and Bg
2 modes discloses the 
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bending and the symmetric oxygen stretching of the Cu–O 
assigned to the monoclinic crystal structure of CuO that is 
consistent with the XRD result [59].

Further, in-depth analysis of chemical compositions 
and X-ray spectroscopy was performed. No impurity was 
observed for the prepared sample through the XPS survey 
spectrum (Fig. S1). The high-resolution core-level spectrum 
of Cu 2p and O 1s is schematically shown in Fig. 2c, d. Con-
ferring to Fig. 2c, the Cu 2p peak of CuO was fitted into four 
peaks, consisting of two kinds of spin–orbit lines, named as 
SP-1 and SP-2 which were located at higher binding ener-
gies as compared to the main peaks which infer the occur-
rence of an empty Cu-3d9 shell and consequently approve 
the existence of  Cu2+ in the sample [60]. The characteristic 
peaks located at 934.27 and 954.26 eV were assigned to 
the Cu 2p3/2 and Cu 2p1/2 peaks with the binding energy 
difference between ~ 19.9 eV which further confirms the 
formation of CuO [61]. Figure 1d shows a high-resolution 
O 1s spectrum of flower-shaped CuO-NSs. Broad asymmet-
ric curves were fitted to three sub-peaks named as Oa, Ob, 
and Oc for binding energies between 529–530, 530–531, 

and 532–533 eV, respectively [62]. There co-existed lattice 
oxygen (Oa ~ 529.98 eV), Cu(OH)2 (Ob ~ 531.4 eV) and 
adsorbed oxygen from hydroxyl groups (Ob ~ 532.2 eV) 
of CuO-NFs formation via green route synthesis method. 
The UV–vis-NIR absorption spectrum of the flower-shaped 
CuO-NSs evaluated optical properties (Fig. S2). The absorp-
tion edge of the flower-shaped CuO-NSs is ≈ 560 nm. Inset 
of Fig. S2 shows that the Eg of the as-prepared flower-
shaped CuO-NSs is ≈ 2.31 eV, as projected by applying 
Kubelka–Munk theory to the absorption spectrum [63].

3.3  Photocatalytic and Antibacterial Activities

Methylene blue (MB,  C16H18N3SCl) [64] dye degradation 
was carried using the as-prepared flower-shaped CuO-NSs. 
The setup and testing are provided in ESI. MB is a thiazine 
cationic dye which has an absorption peak at λmax ≈ 663 nm 
(π → π*) (Fig. 3a). Additionally, the absorption spectra of 
an MB solution photocatalyzed through  H2O2 (alone) and 
flower-shaped CuO (alone) are shown in Fig. S3. The  H2O2 
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was used to improve the degradation rate of the MB dye [65]. 
The absorbance depends on the number of molecules reacted 
with it. The photocatalytic activity (absorption spectra) of the 
flower-shaped CuO + peroxide  (H2O2) was observed when it 
is used as a photo-catalyzer of the methylene blue dye (MB) 
solution under UV light. It is seen from Fig. 3b that the inten-
sity of absorption peak at λmax decreases from 0.66 to 0.04 a.u. 
as reaction time increases from 0 min to 120 min and had no 
new absorption peak during the entire reaction process. This 
exhibits the comprehensive photodegradation of MB. Also, the 
histogram (Fig. 3c) shows that around 90% degradation was 
reached after 120 min of exposure of light which have a strong 
proof that the flower-shaped CuO effectively degraded the MB 
dye molecules. The graph of radiation time against ln(C0/C) 
(Fig. 3d) shows kinetics [64–66] of green synthesized flower-
shaped CuO-NSs photocatalyst based on the model reaction. It 
follows pseudo-first-order kinetics. (A straight line in the slope 
is equal to the rate of degradation.) The rate constant of MB 
dye degradation by the photocatalyst flower-shaped CuO + per-
oxide  (H2O2) is 0.05321 min−1. The possible proposed main 
reaction involved in photocatalytic degradation can be simply 
described as Eqs. 3–10:

When the light (photon) strikes the surface of flower-shaped 
CuO-NSs, it gets absorbed.

The photon (hv) with energy greater than or equal to the 
band-gap energy (Eg) of flower-shaped CuO creates an 
electron–hole  (e− ↔ h+) pair, and both the valence band 
(VB) and conduction band (CB) receive equal amounts 
of photon generating  h+ and  e−, respectively, as shown in 

(3)CuO + hv → e
−(CB − CuO) + h

+(VB − CuO)

(4)e
−(CB − CuO) + O2 → O⋅−

2
+ H+

→ HO∗

2

(5)HO∗

2
+ O⋅−

2
+ H+

→ H2O2 + O2

(6)HO∗

2
+ e

−(CB − CuO) → HO− + H∗

(7)H2O2 + hv → 2OH∗⋅

(8)h
+(VB − CuO) + H2O → H+ + OH∗

(9)h
+(VB − CuO) + HO−

→ OH∗

(10)
HO∗ + OM → Degradation intermediates → CO2 + H2O + salt

Eq. 3 [66]. These photoexcited carriers move to the surface 
of the flower-shaped CuO and react with oxidants such as 
 O2 and reductants such as  OH−, respectively [67]. Gener-
ally, the dissolved pollutants and  O2 will be more prone to 
being adsorbed on the surface of the flower-shaped CuO 
in the mixed solution due to its larger specific surface area 
calculated through  N2 adsorption–desorption analysis (Fig. 
S4). In the presence of photocatalyst,  H2O2 oxidizes the CB 
and condenses itself to be extremely reactive •OH oxidizing 
potential. However, when it reacts with water molecules, 
which further oxidizes the stable MB into reactive interme-
diates, it stops the recombination process of electron-hole 
pairs [64]. Thus, the intermediate species (OH radicals,  O2−, 
 H2O2, and  O2) interacted by surface charges of photocatalyst 
and caused a speed-up in the mineralization of dye mol-
ecules (OM) into the end-product carbon dioxide  (CO2) and 
water  (H2O) with less toxic inorganic acids [65]. Also to 
achieve our basic objective, we have utilized the as-prepared 
flower-shaped CuO-NSs as an antibacterial agent and tested 
their antibacterial efficiency using agar well diffusion pro-
cess report by Naika et al. [26] and Sharma [68] against E. 
coli, S. aureus, and P. fluorescens bacterial strains.

Figure 4 illustrates the inhibition tendency of varied 
concentrations CuO-NFs. The O. sanctum leaves-extracted 
eugenol mediated synthesized flower-shaped CuO-NSs that 
played like a potential inhibitor at 100 µL concentration for 
all examined bacterial organisms, which is exposed from 
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the inhibition zone [69]. Moreover, plant extract also shows 
noteworthy results (zone of inhibition) in contrast to the 
tested pathogenic organisms due to the existence of antibac-
terial efficiency in O. sanctum leaves extract [70, 71]. Also, 
due to the size of the as-synthesized flower-shaped CuO-
NSs, strong electrostatic interaction between bacterial organ-
isms could have been developed which oxidized the bacterial 
cell wall to destruct leading to immediate death [72–74]. The 
as-synthesized CuO-NFs show strong barrier against E. coli 
(29 ± 2 mm) at the concentration of 100 µg mL−1, while at 
concentration of 25 µg mL−1 weak barrier was found in all 
examined bacterial organisms. The obtained results confirm 
that the prepared flower-shaped CuO-NSs showed good anti-
bacterial activity.

4  Conclusion

On the basis of the results and discussion of the present 
study, we can summarize that the flower-shaped CuO-NSs 
can successfully be synthesized via green route using Oci-
mum sanctum (Tulsi) leaves-extracted Eugenol (4-allyl-
2-methoxyphenol) as a capping agent as well as the sta-
bilizing agent. The results obtained from XPS analysis 
corroborated with the crystallographic (XRD, Raman) 
results, revealing the formation of pure monoclinic CuO 
nanostructure. The detailed morphological characterizations 
revealed that the Eugenol created  OH− ions which lead to 
a high percentage exposure of active planes that encourage 
the formation of flower-shaped CuO nanostructures with 
high precision. The synthesized flower-shaped CuO-NSs 
possess photocatalytic activity with  H2O2 oxidant against 
degradation of methylene blue. Moreover, the antibacterial 
activity of flower-shaped CuO-NSs has proven the biologi-
cal importance in ecological and antimicrobial applications. 
The present work highlights the attractive benefits of O. 
sanctum-extracted Eugenol (4-allyl-2-methoxyphenol), e.g., 
high yield, less time, and an inexpensive and nontoxic route 
to synthesize flower-shaped nanostructures with excellent 
ecological properties.
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