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HIGHLIGHTS

• Highly crystalline  Mn2O3 materials with tunable pore sizes are obtained and employed as high‑performance cathode materials for 
reversible aqueous Zn‑ion battery.

• The Zn/Mn2O3 battery exhibits significantly improved rate capability and remarkable cycling durability due to the introduction of 
nanoporous architecture.

• The  Zn2+/H+ intercalations mechanism is put forward for the Zn/Mn2O3 battery.

ABSTRACT Manganese oxides are regarded as one of the most promising cath‑
ode materials in rechargeable aqueous Zn‑ion batteries (ZIBs) because of the low 
price and high security. However, the practical application of  Mn2O3 in ZIBs is 
still plagued by the low specific capacity and poor rate capability. Herein, highly 
crystalline  Mn2O3 materials with interconnected mesostructures and controllable 
pore sizes are obtained via a ligand‑assisted self‑assembly process and used as 
high‑performance electrode materials for reversible aqueous ZIBs. The coordina‑
tion degree between  Mn2+ and citric acid ligand plays a crucial role in the formation 
of the mesostructure, and the pore sizes can be easily tuned from 3.2 to 7.3 nm. 
Ascribed to the unique feature of nanoporous architectures, excellent zinc‑storage 
performance can be achieved in ZIBs during charge/discharge processes. The  Mn2O3 
electrode exhibits high reversible capacity (233 mAh g−1 at 0.3 A g−1), superior rate 
capability (162 mAh g−1 retains at 3.08 A g−1) and remarkable cycling durability 
over 3000 cycles at a high current rate of 3.08 A g−1. Moreover, the corresponding 
electrode reaction mechanism is studied in depth according to a series of analytical methods. These results suggest that rational design of 
the nanoporous architecture for electrode materials can effectively improve the battery performance. 
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1 Introduction

Nowadays the development of new energy has become a hot 
issue under the background of the fast depletion and severe 
deterioration of non‑renewable fossil fuels, and the in‑depth 
study of advanced battery materials is crucial to meet the 
growing requirements for sustainable energy consumption 
[1–4]. Lithium ion batteries (LIBs) have been widely applied 
in the past decades because of their high energy density and 
considerable cycle retention; however, they still face the 
severe challenges of environmental pollution, high cost, 
safety concerns and resource limitation [5–10]. Recently, a 
series of rechargeable aqueous batteries employing alkaline 
cations such as  Na+,  Mg2+,  Al3+ and  Zn2+ as charge carriers 
have been studied because of their low cost and material 
abundance [11–18]. Among these batteries, aqueous Zn‑ion 
batteries (ZIBs) exhibit high volumetric capacities and low 
redox potential, which suggests that ZIB is a prospective 
alternative of LIBs [19–22]. However, the use of ZIBs is still 
far away from practical applications because it is difficult to 
obtain a proper cathode material as the host for storage of Zn 
ions. Prussian blue analogues and vanadium‑based materi‑
als are considered as potential cathode materials in ZIBs, 
whereas the former exhibits respectable cycling performance 
but limited capacities, and the latter delivers high capacities 
but low operating voltage [23–26]. Therefore, it is desirable 
to develop high‑capacity ZIBs cathode materials.

Recently, manganese oxides are regarded as one of the 
most promising cathode materials in ZIB because of its 
high theoretical capacity and reversibility. Among them, 
 Mn2O3 has drawn extensive attention due to its higher 
energy density. However, obstructed by unavoidable 
changes in volume during charging/discharging process, 
the  Mn2O3 electrodes always exhibit low specific capacity 
and unsatisfactory rate capability [27, 28]. As we know, the 
construction of porous architectures is considered to be an 
effective way to alleviate volume expansion during electro‑
chemical processes. Moreover, porous structures are able 
to provide a short path for ion diffusion and the increased 
surface area can offer more reaction sites between active 
materials and electrolytes, which synergistically guarantee 
the cyclic stability and rate capability of aqueous batteries 
[29–31]. Inspired by the previous reports that the partici‑
pation of porous structure contributes to the improvement 
in battery performance, the synthesis of porous  Mn2O3 

cathode materials with large surface areas, high crystal‑
lization degree and tunable pore sizes may provide a new 
perspective for the development of rechargeable aqueous 
zinc batteries. However, only few reports are available on 
porous manganese oxide synthesized by conventional soft‑
templating strategy, because the complicated stable oxida‑
tion states of manganese make it difficult to control the 
interaction between the precursors and the micelles [32, 
33]. Meanwhile, porous  MnOx obtained by hard‑templating 
method is hard to control over the pore sizes and suffers the 
limitation of high cost and low yield [34]. Hence, develop‑
ing highly efficient and stable porous  Mn2O3 cathode for 
ZIBs remains a challenge.

Herein, we demonstrate an efficient strategy to prepare 
nanoporous  Mn2O3 architecture with controllable pore 
sizes, high crystallinity and large specific surface areas 
by a ligand‑assisted self‑assembly process employing cit‑
ric acid as coordination agent. The different coordination 
degree between  Mn2+ and citric acid ligand plays a key role 
in determining the crystallite sizes of mesoporous  Mn2O3. 
The obtained  Mn2O3 possesses tunable mesoporous archi‑
tectures, pore sizes (3.2–7.3 nm) and specific surface areas 
(55–260 m2 g−1) with different molar ratio of  Mn2+ to cit‑
ric acid ligand. The resultant mesoporous  Mn2O3 materials 
were employed as cathode materials in aqueous recharge‑
able ZIBs, and the electrochemical performances of the 
materials with various pore structures were investigated 
comparatively. It is worth noting that the discharge capacity 
improved greatly with the increase in the surface areas. Ben‑
efiting from the unique porous structure and high crystallin‑
ity, the battery shows high reversible capacity (~ 233 mAh 
 g−1 at a current density of 0.3 A  g−1), superior rate capability 
(162 mAh  g−1 retains at 3.08 A  g−1) and remarkable cycle 
stability over 3000 cycles in a mild aqueous electrolyte bat‑
tery system. Moreover, the battery reaction mechanism was 
revealed via multiple analytical methods.

2  Experimental Section

2.1  Synthesis of Mesoporous  Mn2O3

For the typical synthesis of MMO‑7.3, 0.8 g of Pluronic 
P123 was dissolved in 7.0 mL n‑butanol solvent, followed 
by adding 0.7 mL concentrated  HNO3 to adjust the pH 
value under magnetic stirring. Then, 0.961 g citric acid 
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was added, and after stirring for 1 h, 0.635 g inorganic 
source Mn(NO3)2·4H2O was added. The above suspension 
was stirred for over 2 h at room temperature and until the 
suspension forms transparent light yellow solution. Then, 
the solution was poured into a Petri dish (diameter 90 mm) 
to evaporate the solvent at 100 °C for 4 h. For the calci‑
nation process, the prepared brown powder product was 
scraped and then heated to 350 °C for 2 h under air atmos‑
phere, leading to the highly crystalline mesoporous  Mn2O3 
product.

2.2  Electrochemical Measurements

As‑synthesized material, ketjen black and polyvinylidene 
fluoride (PVDF) were mixed at a weight ratio of 7:2:1 in 
NMP. Subsequently, the slurry was cast onto carbon paper 
and dried at 80 °C under vacuum for 12 h to prepare the 
cathodes. Cyclic voltammetry (CV) measurements were 
taken on a CHI 660e electrochemical station at a scan rate 
of 0.1 mV s−1. Electrochemical measurements were taken on 
the CR2032 coin cells using zinc foils as an anode and glass 
fiber as a separator. The hybrid aqueous solution with 2 mol 
 L−1  ZnSO4 and 0.2 mol  L−1  MnSO4 was used as the elec‑
trolyte. Galvanostatic charge/discharge test was performed 
on a LAND CT2001A.

3  Results and Discussion

3.1  Morphology, Phase and Structure Analysis 
of  Porous  Mn2O3

The illustration of formation mechanism for mesoporous 
 Mn2O3 is shown in Fig.  1. In the ligand‑assisted self‑
assembly process, porous  Mn2O3 was synthesized by using 
Mn(NO3)2·4H2O as the metal source, citric acid as the 
coordination agent, Pluronic P123 as a soft template and 
n‑butanol as a solvent, respectively. During the reaction, 
 Mn2+ is connected with citric acid through coordination 
bonds, and citric acid and polyethylene oxide (PEO) chains 
are linked by hydrogen bonds. The synergistic effect of these 
two kinds of chemical bonds guarantees the controllable 
self‑assembly process and contributes to the formation of 
well‑defined mesostructure (Fig. S1). When the molar ratio 
of  Mn2+ to citric acid is less than 0.5, the metal ions are 
in a non‑full coordination state. In this process, the higher 
proportion of ligand and the higher coordination degree 
between  Mn2+ and ligands are achieved; consequently, the 
larger metal precursors are obtained. When the molar ratio of 
 Mn2+ to citric acid is greater than or equal to 0.5, the  Mn2+ 
is in full coordination, so the coordinated metal precursors 
will not further grow up anymore. After calcination, the 
coordinated precursors convert to highly crystalline  Mn2O3 
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Fig. 1  Schematic illustration of the formation process for mesoporous  Mn2O3
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nanoparticles, and the random close packing of these nano‑
particles leads to the formation of the walls of nanoporous 
architecture. According to the pore sizes (confirmed by  N2 
adsorption measurements in the following), the samples are 
named as MMO‑3.2, MMO‑4.9, MMO‑6.1 and MMO‑7.3.

The morphology and structure of various mesoporous 
 Mn2O3 were characterized by field emission transmission 
electron microscopy (FETEM). It can be clearly observed 
that the mesopores are evenly dispersed throughout the 
materials. The pore size can be tuned by simply adjust‑
ing the molar ratio of  Mn2+ to citric acid ligand. The ratio 
between metal ion and ligand has a significant influence on 
the coordination degree between metal ions and ligands, 
which directly leads to different entanglement densities of 

the mesoporous framework. The walls of the mesopores 
are constructed from numerous connected intraparticle 
voids; in other words, the larger the particle size, the larger 
the pore size (Fig. S2). As shown in Fig. 2a–d, with the 
increase in the ratio (nMn

2+/nLigand) from 0.10 to 0.5, the pore 
sizes can be controlled in a certain range. However, when 
all ligands coordinate with  Mn2+, excessive increase in the 
ratio (nMn

2+/nLigand) would no further improve the pore size and 
porosity. Figure 2e shows a high‑resolution TEM (HRTEM) 
image of the MMO with pore size of 3.2 nm (MMO‑3.2), 
and the interlayer distances of lattice fringes are 0.47 and 
0.38 nm, which are assigned to the (200) and (211) plane 
lattice parameter of cubic  Mn2O3 phase. The corresponding 
selected‑area electron diffraction (SAED) shown in Fig. 2f 
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exhibits a series of concentric rings, confirming the poly‑
crystalline character of mesoporous  Mn2O3. The energy‑
dispersive X‑ray spectroscopy (EDX) elemental mapping 
(Fig. 2g) reveals that Mn and O elements are distributed 
homogeneously among  Mn2O3. The presence of C element is 
attributed to the incomplete combustion of P123 surfactant.

Powder X‑ray diffraction (XRD) was conducted to char‑
acterize the crystal structures of the synthesized manganese 
oxides (Fig. 2h). All characteristic peaks match well with the 
standard card of  Mn2O3 (JCPDS No. 24‑0805). The size of 
aggregated MMO‑3.2 nanoparticles calculated by the Scher‑
rer formula is approximately 5 nm, which is consistent with 
TEM observations. As shown in Fig. S3, the amorphous 
precursors can transform to highly crystalline  Mn2O3 with 
the increase in the calcination temperatures. The Fourier 
transform infrared (FTIR) spectra are shown in Fig. 2i, the 
peak of C=O in citric acid shifts to low wave number, and 
the peak of –OH in citric acid almost disappears, confirming 
that the carboxyl has coordinated with  Mn2+ [35]. After cal‑
cination at 350 °C, the peak of C=O completely disappears 
in the spectra, and these results demonstrate that the ther‑
mal decomposition boosts the transition from intermediate 

state of manganese coordination compound to manganese 
oxide. Raman spectra were performed to further study the 
vibrational information of the  Mn2O3. As shown in Fig. S4, 
one strong peak appeared at 634 cm−1 is attributed to the 
characteristic symmetric Mn–O stretching mode of  MnO6 
octahedrons. Peaks detected at 171 and 200–400 cm−1 are 
assigned to the out‑of‑plane bending modes and asymmet‑
ric stretching of bridging oxygen species (Mn–O–Mn) of 
 Mn2O3, respectively [36, 37].

To determine the valence state of Mn, the obtained 
mesoporous material was studied by X‑ray photoelectron 
spectroscopy (XPS). Survey scan (Fig. 3a) reveals the coex‑
isting of Mn, O and C on the material surface. As shown in 
Fig. 3b, two main signals at 641.6 and 653.4 eV of Mn 2p are 
ascribed to the Mn 2p3/2 and Mn 2p1/2, respectively, and the 
spin‑energy separation of 11.8 eV is a typical value of  Mn3+ in 
 Mn2O3 [38]. Three O 1s peaks, at 529.7, 531.0 and 532.4 eV, 
can be observed in O XPS spectrum (Fig. 3c), correspond‑
ing to Mn–O–Mn, Mn–O–H and O–H–O, respectively. Peaks 
appearing at 288.3, 286.0 and 284.7 eV are ascribed to the C 
1s of  Mn2O3 (Fig. 3d), which come from the residual carbon 
from incomplete combustion of the surfactant. To monitor the 
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degradation behavior of mesoporous  Mn2O3, thermogravimet‑
ric analysis (TGA) was employed under air atmosphere (Fig. 
S5). The slight weight losses before 350 °C are attributed to 
the  H2O absorbed in the mesoporous channels. The degrada‑
tion of the residual carbon contributes to the weight loss in 
the range of 350–550 °C, leading to 78% mass retention [39].

The nanoporous architectures were further studied by  N2 
adsorption–desorption measurements. Figure 3e, f shows 
the  N2 isotherms and corresponding pore‑size distributions 
of mesoporous  Mn2O3 prepared with different molar ratios 
of  Mn2+ to citric acid ligand. As shown in Fig. 3e, all of the 
isotherms exhibit typical type‑IV curve with obvious H1‑type 
hysteresis loop. For MMO‑3.2, the specific surface area, 
pore volume and pore size are calculated to be 260 m2 g−1, 
0.32 cm3  g−1 and 3.2 nm, respectively. With the increase in 
ratio (nMn

2+/nLigand), the pore size enlarged gradually from 3.2 
to 7.3 nm, while the BET surface area of mesoporous  Mn2O3 
decreases from 260 to 55 m2  g−1 (Table S1). Apart from molar 
ratio, the calcination temperatures also have a great influence 
on the mesoporous architectures. For MMO‑3.2, with the 
increase in calcination temperatures from 350 to 550 °C, the 
nanoparticles accumulate and aggregate together during the 
thermal recrystallization (Fig. S6). Consequently, the pore 
diameter and crystallinity degree increase at the same time, 
while the specific BET surface areas (from 230 to 42 m2  g−1) 
and pore volumes (from 0.321 to 0.113 cm3  g−1) decrease 
gradually (Fig. S7). Further increasing the calcination temper‑
ature to 650 °C, the  Mn2O3 shows non‑porous characteristics 
because the porous structure completely collapses (Fig. S8). 
The gradient mesoporous  Mn2O3 materials provide sufficient 
samples to explore their electrochemical properties.

3.2  Electrochemical Characterization of Zn/Mn2O3 
Battery

The research on ZIBs is currently in its primary stage, and 
Mn‑based materials are considered as one of the most attrac‑
tive candidates in ZIBs [14, 40]. Though the  Mn2O3 as cath‑
ode materials possesses the advantages of high theoretical 
capacity and energy density, the research on Zn/Mn2O3 bat‑
tery is rare and the reported  Mn2O3 electrodes still face the 
challenge of poor rate capability and low specific capacity 
[27]. Here, Zn/Mn2O3 battery was assembled by employing 
highly crystalline mesoporous  Mn2O3 as a cathode, Zn foils 
as the anode, 2 mol  L−1  ZnSO4 and 0.2 mol  L−1  MnSO4 

solutions as the neutral electrolyte. Cyclic voltammetry (CV) 
test and galvanostatic discharge–charge experiment were 
operated to investigate the electrochemical performance of 
the as‑synthesized mesoporous  Mn2O3 materials. Figure 4a 
shows the CV curves of Zn/MMO‑3.2 cell at a scan rate 
of 0.1 mV s−1 between 1.0 and 1.8 V. Two pairs of redox 
peaks on both cathodic and anodic sweeps can be observed, 
demonstrating a multistep reaction processes. The galvano‑
static charge/discharge profiles of the MMO‑3.2 electrode 
at a current rate of 100 mA g−1 are shown in Fig. 4b. The 
discharge curve exhibits two apparent plateaus appeared at 
about 1.25 and 1.38 V, and the charge curve exhibits plateaus 
at about 1.60 and 1.65 V, which are in accordance with the 
two pairs of reduction/oxidation peaks in the CV curves. 
The initial three discharge capacities are 262.5, 301.6 and 
288.1 mAh  g−1, respectively, much higher than previously 
reported results [27, 28]. The latter discharge capacities are 
larger than the first one, which can be ascribed to the dis‑
charge capacity improved by the activation process.

The rate performance of the  Mn2O3 electrodes with differ‑
ent surface areas was examined by cycling at various current 
densities. As shown in Fig. 4c, owing to superior structural 
stability and remarkable electrode reaction kinetics of the 
mesoporous  Mn2O3 materials, all the electrodes exhibited 
excellent rate performance. Under the same scan rate, the 
discharge capacities improve greatly with the increase in the 
surface areas. The optimal sample of MMO‑3.2, possessing 
the smallest pore size and highest surface area, delivered the 
most excellent rate performance with discharge capacities of 
292, 258, 228, 206, 179 and 162 mAh  g−1 at various rates of 
0.2, 0.5, 1, 2, 5 and 10 C (1 C = 308 mA g−1), respectively. 
In order to further clarify the role of the nanoporous archi‑
tecture in battery performance, the cycling performances of 
the  Mn2O3 with different pore sizes were carried out at the 
current rate of 308 mA g−1 (1 C). As depicted in Fig. 4d, 
except obvious capacity fading can be observed from the 
cycling curves of MMO‑7.3 in the first few cycles, and other 
porous samples all show steady cycling performance, dem‑
onstrating excellent structural stability and steady electro‑
chemical kinetics. The capacity fading of MMO‑7.3 in initial 
cycles is attributed to the unstable loose pore structure. The 
loose pores are not as robust as the dense ones. However, 
after several charging and discharging processes, the loose 
mesoporous structure is stabilized and the capacity almost 
keeps constant. It is noteworthy that the MMO‑3.2 elec‑
trode delivers a much higher capacity of 233 mAh  g−1 at the 
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current of 308 mA g−1 and up to 99% capacity retention can 
be maintained after 120 cycles. The long‑term cycling stabil‑
ity at high current density is crucial to evaluate the battery 
performance. As shown in Figs. 4e and S9, porous  Mn2O3 
materials exhibit considerable long‑term cycling stability. 
Especially for MMO‑3.2, the electrode presents admirable 
cycling capacity stabilized at 146 mAh  g−1 after 3000 cycles 
at high current density of 3.08 A  g−1 with a capacity reten‑
tion of 89%. Moreover, the Coulombic efficiency always 

maintains nearly 100% in the whole cycle period, superior to 
most previous reported manganese oxide materials in terms 
of both discharge capacity and cycling stability as listed in 
Table S2 [20, 41, 42].

It is worth noting that the pre‑addition of  MnSO4 plays a 
crucial role in the enhancement of cycling performance. In the 
single  ZnSO4 electrolyte atmosphere, the continuous  Mn2+ 
dissolution results in a significant capacity loss. As shown 
in Fig. 5a, b, the pre‑addition of 0.2 mol  L−1  Mn2+ does not 
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affect the progress of the redox reaction; instead, an appropri‑
ate dissolution equilibrium between  Mn2+ dissolution and the 
reoxidation of  Mn2+ is achieved, which effectively improves 
the cycle stability of the battery. Sweep voltammetry curves 
(Fig. 5c) at different scan rates from 0.1 to 1 mV s−1 were used 
to study the electrochemical kinetic according to Eqs. 1 and 2:

(1)i = av
b

(2)log i = log a + b log v

where a and b stand for adjustable coefficients, and the cur‑
rent (i) and the sweep rate (v) follow a power–law relation‑
ship. Generally, the b value [refer to the slope of log (i) 
vs. log (v) curve] of 0.5 demonstrates a diffusion‑controlled 
process, whereas 1.0 signifies a surface capacitive‑controlled 
process [43]. The b values of the four peaks (Fig. 5d) in 
CV curves were calculated to be 0.5338, 0.5406, 0.5432 
and 0.5615, respectively, which indicates that the electro‑
chemical kinetic of  Mn2O3 electrode depends mainly on the 
diffusion‑controlled process.
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Apparently, the introduction of nanoporous architec‑
tures can considerably enhance the rate performance and 
cycling stability of Zn/Mn2O3 batteries. Compared with 
bulk  Mn2O3, the superior performances of porous architec‑
tures are mainly attributed to the following aspects: First 
and foremost, the nanoporous architecture can effectively 
alleviate the volume expansion and contraction during 
charge/discharge process. Second, as shown in Fig. 1, the 
interconnected porous structure and large specific surface 
area facilitate liquid electrolyte diffusion into the nanopar‑
ticles and allow  Zn2+ to easily transfer from liquid elec‑
trolyte to the solid electrode. Moreover, well‑connected 
 Mn2O3 nanocrystals provide a continuous electron‑con‑
ducting path for ZIBs.

3.3  Mechanism Study on Zn/Mn2O3 Battery

XPS, ex situ XRD and TEM analyses were carried out to 
reveal the Zn‑storage mechanism of Zn/Mn2O3 batteries. Fig‑
ures 6a–c shows the XPS spectra of  Mn2O3 cathode in charge/
discharge state, verifying the oxidation state of Mn and Zn 
elements. For Mn element, the 2p3/2 and 2p1/2 peak can be, 
respectively, divisible into two different peaks corresponding 
to  Mn3+ and  Mn2+, and the area ratio of  Mn3+/Mn2+ declined 
from 2.13 to 0.60 in the discharge process; nevertheless, in 
the following charging process, the value returns to the initial 
state (Fig. 6a, b). The change of intensity ratio is referred to 
the reversible redox reaction between  Mn3+ and  Mn2+. For 
Zn element, two peaks of Zn 2p at 1023.5 and 1046.7 eV can 
be observed in Zn XPS spectra at the fully discharged state 
(1.0 V), suggesting the formation of Zn‑containing compound 
(Fig. 6c). Compared with the discharge state, the relative inten‑
sity of Zn 2p peak is much lower at the fully charge state of 
1.8 V, demonstrating that the  Zn2+ can be reversibly removed 
from the electrodes [44, 45].

To explore the structural evolution during discharge/charge 
process, ex situ XRD patterns of different states from A to 
D (marked in Fig. 6d) at the 100th cycle were conducted. 
As shown in Figs. 6e and S10, some new reflection peaks 
belonging to MnO (JCPDS No. 04‑0326) appear at 36.1° 
and 58.5° in the discharge process and the intensities of the 
peaks gradually weaken in the following charging process, 

indicating a  H+ insertion/extraction process. In this process, 
 Mn2O3 reacts with a proton in  H2O to form MnO, and the 
residual hydroxyl ions connect with  ZnSO4 and  H2O to form 
 ZnSO4·[Zn(OH)2]3·xH2O for achieving charge balance in the 
neutral electrolyte atmosphere. The characteristic peak of 
 ZnSO4·[Zn(OH)2]3·xH2O (JCPDS No. 39‑0688) observed 
at 50.8° is in good agreement with the proposed  H+ inser‑
tion process. In addition, the characteristic diffraction peak 
of (222) at 32.9° in  Mn2O3 gradually shifts to lower diffrac‑
tion angles during discharge process and returns to its original 
state during the charge process, demonstrating the expansion/
recovery of crystal lattice of  Mn2O3 [46–49]. Remarkably, the 
lattice expansion of  Mn2O3 was attributed to the intercala‑
tion of  Zn2+, who possesses larger atomic radii than  Mn3+, 
and the new reflection appearing at around 34° belonging to 
 ZnxMn2O3 further confirms the  Zn2+ intercalation process. 
The reaction processes proposed above were verified by SEM 
mapping and TEM characterizations (Figs. S11 and 6f–h). In 
the fully discharge state, the EDX elemental mapping images 
reveal a uniform distribution of Mn, Zn and O element, which 
manifests the intercalation of  Zn2+ into  Mn2O3. Meanwhile, 
a newly formed thin layer with uniform lattice spacing of 
0.41 nm can be clearly observed in the HRTEM image, which 
is attributed to the (110) lattice planes in MnO, confirming the 
reversible redox reaction between  Mn2O3 and MnO. Overall, 
the  Zn2+ and  H+ intercalations mechanism (Fig. 5e) in the two 
electrodes is expressed as follows:

Cathode:

Anode:

Overall:

xZn2+ + 2e− +Mn2O3 ↔ Zn
x
Mn2O3

Mn2O3 + 2H+ + 2e− ↔ 2MnO + H2O

3Zn2+ + 6OH− + ZnSO4 + xH2O ↔ ZnSO4 ⋅

[

Zn(OH)2
]

3
⋅ xH2O
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(

1

3
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+

(

x

3
+ 1

)

H2O ↔ 2MnO + Zn
x
Mn2O3

+

(

1

3

)

ZnSO4 ⋅ [Zn(OH)2]3 ⋅ xH2O
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4  Conclusions

In summary, we propose an efficient approach to ration‑
ally design the nanoporous architecture of  Mn2O3 by 
facilely altering molar ratio of  Mn2+ to citric acid ligand 
via a ligand‑assisted self‑assembly process. Effectively 

modulating the molar ratio between  Mn2+ and citric acid 
ligand can obtain mesoporous  Mn2O3 with controllable 
grain sizes, high BET surface areas (from 55 to 260 m2  g−1) 
and tunable pore‑size distributions (from 3.2 to 7.3 nm). 
The above‑mentioned unique features make the mesoporous 
 Mn2O3 materials outstanding candidates in rechargeable 
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aqueous Zn‑ion battery, exhibiting high capacity, together 
with superior rate capacity and remarkable cycle stability. 
Furthermore, the Zn‑storage process is further studied and 
 Zn2+/H+ intercalations mechanism is put forward by com‑
bining electrochemical measurements and multiple analyti‑
cal methods. The key finding summarized in this work is 
that the rational design of the nanoporous architecture can 
effectively boost the battery performance, offering a new 
avenue for the development of advanced electrode materials.
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