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S1 Supplementary Characterizations of Materials

The morphologies and full structures of the synthesized samples were investigated by
means of scanning electron microscopy (SEM, VEGA3 SBH) and field-emission
transmission electron microscopy (FE-TEM, JEM-2100 F). The ex-situ TEM analysis
of CoSe2@NC/HMCS composites in the fully discharged and charged states was
conducted using the same equipment. The sample crystallographic features were
confirmed with the use of powder X-ray diffraction (XRD, RIGAKU D/MAX-
2500V) with Cu-Ka radiation (A = 1.5418 A) at Korea University (Seoul). X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was used to measure
the chemical content of the composites, and a Pyris 1 thermogravimetric (TG)
analyzer (Perkin Elmer) was used to confirm the carbon content of the composite in
the temperature range of 30700 <T at a ramping rate of 10 T min in air. Ex-situ
XPS analysis of the electrodes in the fully discharged and charged states was
performed by using the ULVAC-PHI X-TOOL. The pore sizes and surface areas of
the prepared materials were evaluated by using the Brunauer—Emmett—Teller (BET)
method, with pure N as the adsorbate gas. Raman spectroscopy (Jobin Yvon LabRam
HR800, samples excited by a 632.8-nm He/Ne laser) was conducted to analyze the
carbon structure in the composites.

S2 Supplementary Electrochemical Measurements

The electrochemical properties of the CoSe2@NC/HMCS and CoSe2/HMCS
composites were examined with the use of a standard 2032-type coin cell. The
potassium-ion battery (KIB) anodes were fabricated by mixing the active material,
Super P, and sodium carboxymethylcellulose (weight ratio of 7:2:1, respectively) in
DI water, and the mixture was then applied onto copper foil using a doctor blade. The
coin cell consisted of potassium metal as the counter-electrode, porous polypropylene
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as the separator, and 1 M potassium bis(fluorosulfonyl) imide (KFSI) dissolved in a
mixture of ethylene carbonate/diethyl carbonate (EC/DEC, volumetric ratio of 1:1) as
the electrolyte, with the cell being manufactured in a glove box. The galvanostatic
charge/discharge characteristics and cyclic voltammetry (CV) determinations were
conducted by using a battery analyzer (WonATech, WBCS-3000s cycler) over the
potential range of 0.001-3.0 V at various current densities. The diameter and mass
loading of the electrode were 1.4 cm and 1.2-2.0 mg cm?, respectively.
Electrochemical impendence spectroscopy (EIS) measurements of the coin cell were
conducted in the range of 0.01-100 kHz.

S3 Supplementary Figures and Table

(c) Co-nitrate/HMCS
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Fig. S1 Morphologies of HMCS, Co-nitrate/HMCS, and ZIF-67/HMCS prepared
under vacuum state : a, b SEM image and TEM image of HMCS, ¢, d SEM images of
Co-nitrate/HMCS, and e, f SEM images of ZIF 67/HMCS
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Fig. S2 Morphologies and elemental mapping images of ZIF-67/HMCS composite
prepared under vacuum state: a, b TEM images and c elemental mapping images
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Fig. S3 XRD patterns of ZIF-67/HMCS composite and powders formed by solid-state
reaction of cobalt salt and 2-methylimidazole at 180 <C

ZIF-67 HMCS

Fig. S4 Morphologies of ZIF-67/HMCS composite prepared by liquid-phase process:
a, b SEM images
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Fig. S5 Morphologies of Co-nitrate/HMCS and ZIF-67/HMCS composites
synthesized under non-vacuum state: a, b SEM images of Co-nitrate/HMCS and c, d
SEM images of ZIF-67/HMCS

Fig. S6 Morphologies and elemental mapping images of ZIF-67/HMCS composite
prepared under non-vacuum state: a, b TEM images and ¢ elemental mapping images
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Fig. S7 XRD patterns of of CoSe;@NC/HMCS and CoSe/HMCS composites
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Fig. S8 XPS survey scan for CoSex@NC/HMCS composite
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Fig. S9 a TG curves, b Raman spectra, ¢ N2 gas adsorption and desorption isotherms,
and d BJH pore size distributions of HMCS, CoSe:@NC/HMCS, and CoSe2/HMCS
composites
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Fig. S10 Randle-type equivalent circuit model used for EIS fitting
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Fig. S11 Morphologies of a, b CoSe:@NC/HMCS and ¢, d CoSe2/HMCS composites
after 100 cycles
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Fig. S12 Electrochemical properties of HMCS: a initial galvanostatic charge-

discharge curves, b cycle performance at a current density of 0.1 A g%, and c rate

performance at various current densities
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Fig. S13 Electrochemical properties of CoSe:@NC/HMCS composite in the range of
0.001-2.0 and 0.001-2.5 V: a, b the first and second galvanostatic charge-discharge
curves, b cycle performances at a current density of 0.1 A g
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Fig. S14 Galvanostatic charge-discharge curves of CoSe@NC/HMCS composite at
various current densities
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Fig. S15 Electrochemical properties of CoSe:@NC/HMCS composite prepared under
non-vacuum state: a cycle performance at a current density of 0.1 A g™* and b rate
performance at various current densities

Fig. S16 Morphologies of CoSe;@NC/HMCS-1/3 and CoSe2@NC/HMCS-3
composites: a, b SEM images
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Fig. S17 Electrochemical properties of CoSe.@NC/HMCS composites with different
amount of Co-nitrate: a cycle performances at a current density of 0.1 A g, and b
rate performances at various current densities
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Fig. S18 Nyquist plots of a fresh cells, b after the 1st, 60th, and 100th cycle of
CoSe;@NC/HMCS composite, ¢ after the 1%, 60", and 100" cycle of CoSe2/HMCS
composite, and d the relationship between the phase angle (0v™/?) and impedance (Z’)
of the two electrodes at the 100th cycle

Table S1 Electrochemical properties of various metal selenides materials applied as
potassium-ion batteries reported in the previous literatures

Material Voltage Current rate Discharge | Cycle Rate Refs.
range (V) (mA g capacity number capacity
(mAh g*) (mAh g*)

CoSe2@NC/HMCS 0.001-3.0 100 442 120 263 (20 A Our

gl work
N-doped carbon/ultrathin | 0.01-2.6 50 335 200 226 (20 A [S1]
2D metallic cobalt gl
selenide
Co0855e@C in carbon 0.01-2.6 200 353 100 166 (5.0 A [S2]
nanofibers film gl
Coo.ssSe nanparticles in 0.01-3.0 100 287 60 111 (20 A [S3]
N-doped carbon gl
CoSez threaded by N- 0.01-2.5 200 253 100 196 (2.0 A [S4]
doped carbon nanotubes gl
N-rich CuzSe/C 0.1-2.5 100 190 200 104 (2.0 A [S5]
nanowires gl
N-doped carbon- 0.01-3.0 200 360 60 168 (4.0 A [S6]
encapsulated ZnSe@C g?)
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Coo.s55€ cubes 0.01-2.6 50 402 200 260 (1.0 A [S7]

encapsulated in graphene gl

MoSe2/C nanostructures | 0.01-2.5 200 322 100 224 (20 A [S8]
g

CoogsSe quantum dots/C | 0.01-2.5 50 402 100 220 20A | [S9]

composite g?h
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