Supporting Information for

Single-Atom Cobalt-Based Electrochemical Biomimetic Uric Acid

Sensor with Wide Linear Range and Ultralow Detection Limit

Fang Xin Hu¹, Tao Hu¹, Shihong Chen⁴, Dongping Wang⁵, Qianghai Rao¹, Yuhang Liu¹, Fangyin Dai⁶, Chunxian Guo^{1, *}, Hong Bin Yang^{1, *}, Chang Ming Li^{1, 2, 3, *}

¹Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China

²Institute for Advanced Cross-field Science & College of Life Science, Qingdao University, Qingdao 200671, People's Republic of China

³Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China

⁴School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China

⁵Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China

⁶State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, People's Republic of China

*Correspondence authors. E-mail: <u>cxguo@usts.edu.cn</u> (CX Guo); <u>yanghb@usts.edu.cn</u> (HB Yang); <u>ecmli@swu.edu.cn</u> (CM Li).

Supplementary Figures and Tables

Fig. S1 SEM image of (a) P-Co-NG; (b) NG; (c) Co₃O₄; (d) Co₃O₄/GO

Fig. S2 TEM image of (a) P-Co-NG; (b) NG; (c) Co₃O₄; (d) Co₃O₄/GO

Fig. S3 XRD patterns of materials

Fig. S4 BET analysis of A-CO-NG

Fig. S5 XPS analysis of different samples: (a) full spectra; (b) Co 2p spectra

Fig. S6 First-shell fitting of the Fourier transformation of the EXAFS spectrum of Co-Pc (the EXAFS spectrum was fitted using the FEFF 8.2 code)

Fig. S7 CV curves of the A-Co-NG nanozyme recorded in a 0.1 M NaOH solution with increasing UA concentration

Fig. S8 CV curves of various catalysts towards a) without and b) with 400 μ M UA recorded in a 0.1 M NaOH solution

Fig. S9 The influence of pH value of test solution controlled from 10 to 14 on the electrochemical response of the A-Co-NG towards 400 μ M UA

Fig. S10 (a) Selectivity for UA detection of A-Co-NG nanozyme. (b) Selectivity for UA detection of A-Co-NG with mixed or single interfering species

Fig. S11 The influence of applied potential controlled from 0.1 to 0.4 V vs. SCE on current response of the A-Co-NG towards 33 μ M UA

Fig. S12 Amperometric *I-t* response of A-Co-NG for serum sample detection

Fig. S13 (a) Bader charge of UA; Adsorption of UA molecule on A-Co-NG with optimized configuration of (b) vertical adsorption and (c) parallel adsorption

Fig. S14 Amperometric I-t response of (a) A-Co-NG and (b) P-Co-NG upon continuous injection of 5 μ M UA at an applied potential of 0.4 and -0.05 V vs SCE in 0.1 M NaOH

Table S1 Best fitting EXAFS data for different Co-based catalysts

Sample	Shell	Ν	R (Å) (EXAFS)	ΔE (eV)	Debye-Waller factor $\Delta\sigma 2$ (Å ²)	R- factor
Co-N-G	Co-N	3.38±0. 67	1.87±0.02	-3.6 ±2.4	0.005±0.002	0.0055
CoPc	Co-N	3.58±0. 52	1.9±0.03	-3.6 ±3.0	0.002±0.0034	0.0085

N: coordination number.

Sample	Detected (µM)	Added (µM)	Found (µM)	Recovery (%)
Serum 1	1 90	9.80	12 24	105.5
Serum 1	1.90	2.00	12.27	105.5
Serum 2	1.00	9.80	10.58	97.7
Serum 3	2.29	9.80	12.25	101.6

Table S2 Results for the determination of UA in real samples