Supplementary Figures and Table

Enhanced Potassium-ion Storage of the 3D Carbon Superstructure by Manipulating the N Species and Morphology via Bottom-up Synthesis Method

Yanhua Li^{1, 2}, Kui Xiao², Cong Huang¹, Jin Wang³, Ming Gao¹, Aiping Hu¹, Qunli Tang¹, Binbin Fan¹, Yali Xu¹, Xiaohua Chen^{1, *}

¹College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

²College of Materials and Chemistry Engineering, Hunan Institute of Technology, Hengyang 421002, China.

³Zhuzhou Times New Material Technology Co., LTD, Zhuzhou 412007, China.

* Xiaohua Chen, E-mail: xiaohuachen@hnu.edu.cn

Content

Note 1 Photograph of monomer salts	2
Note 2 Photograph of PI particles	2
Note 3 FT-IR and TGA analysis	2
Note 4 SEM images	4
Note 5 Nitrogen adsorption-desorption isotherms of NCSs	5
Note 6 XPS and high-resolution XPS spectra of NCSs	6
Note 7 Characteristics (XPS and BET surface area) of NCSs	6
Note 8 Electrochemical performance of NCSs as PIB anodes.	7
Note 9 Formation energies calculation of the three N-doped carbon via DFT	.10

Note 1 Photograph of monomer salts

Fig. S1. Photograph of monomer salts

Note 2 Photograph of PI particles

Fig. S2. Photograph of PIs.

Note 3 FT-IR and TGA analysis

FT-IR spectra were recorded on a Bruker Tensor 27. Resolution was set to 2-4 cm⁻¹, and spectra were recorded from 4000 to 600 cm⁻¹.

Fig. S3. FT-IR spectra of monomer salt [ODA²⁺PMDA²⁻]. \blacktriangle : typical monomer salt modes, \tilde{v}_{as} (Ar-NH³⁺) \approx 2840 cm⁻¹, \tilde{v}_{s} (Ar-NH³⁺) \approx 2580 cm⁻¹, \tilde{v}_{s} (C=O, Ar-COO-) \approx 1570 cm⁻¹.

Fig. S4. TGA curve of PI-5 tested in N2 atmosphere.

Note 4 SEM images

Fig. S5. SEM images of (a) PI-1, (b) PI-2, (c) PI-4, (d) NCS-1, (e) NCS-2, (f) NCS-4. Scale bar: (a)-(c) 2 μm, (d)-(e) 200 nm.

Fig. S6. SEM images of PI-6

Note 5 Nitrogen adsorption-desorption isotherms of NCSs

Fig. S7. a) Nitrogen adsorption-desorption isotherms of the NCS-1. b) Pore size distribution of the NCS-1. c) Nitrogen adsorption-desorption isotherms of the NCS-3. d) Pore size distribution of the NCS-3.

Fig. S8. XPS survey spectra. a) Survey spectrum of XPS of NCSs. N 1s high-resolution XPS spectra of NCSs: b) NCS-3, c) NCS-1. C 1s high-resolution XPS spectra of NCSs: d) NCS-5, e) NCS-3, d) NCS-1. O 1s high-resolution XPS spectra of NCSs: g) NCS-5, h) NCS-3, e) NCS-1.

Table S1 Content of element by EA and N-doped type by XPS										
Sample	C (%) N (%	N I (0/)	%) H (%)	O (%)	N type (%)					
		IN (70)			N-5	N-6	N-X	N-Q		
NCS-5	76.18	9.12	3.22	11.48	52.0	40.7	1.1	6.2		
NCS-3	76.59	8.88	3.68	10.85	50.6	39.2	3.5	6.7		
NCS-1	76.89	8.45	3.91	10.75	50.1	38.9	3.7	7.5		

Note 7 Characteristics of NCSs

Fig. S9 presents the FTIR spectrum of PI and NCSs. The bands of PI at 1780, 1720 cm⁻¹ are attributed to the stretching and bending vibration of C=O, the peak at 1381 cm⁻¹ belongs to the stretching vibration of C-N-C. The other peaks of PI at 1502 and 1248 cm⁻¹ are assigned to the C-C stretching of benzene ring and the C-O-C stretching, respectively [1]. Due to the high thermal stability of PI, the weak characteristic peak of the C=O and C-H bond remained in the NCSs after 600 °C pyrolysis, as shown in the FTIR spectrum. The emerging peaks of NCSs at 1500–1610 cm⁻¹ and 1000–1320 cm⁻¹ are assigned to the stretching vibration of the C=C bond and C-N bond derived from the pyrolysis [2]. FTIR results indicate the high oxygen-containing and nitrogen-containing groups of NCSs, which is in accordance with the high O content from EA result and lowest graphitization degree from Raman analysis (I_D/I_G=2.9).

Fig. S9. FI-IR spectrum of PI and NCSs

Note 8 Electrochemical performance of NCSs as PIB anodes.

Fig. S10. Electrochemical performance of NCSs as PIB anodes in half cells. a-c) Cyclic voltammetry (CV) of the NCSs electrode for PIBs between 0.01 V and 3.0 V with a scan rate of 0.1 mV/s. d) Potassiation and depotassiation profiles of the NCS-5 electrode for the first cycle at 50 mA g^{-1} .

Fig. S11 EIS analysis of NCS-5.

			Reversible	Cyclability (capacity							
Materials	Sample	ICE (%)	capacities	retention)	Refs						
	labels	@ 50 mA g ⁻¹	mA h g ⁻¹	mA h g ⁻¹ @ mA g ⁻¹ @							
			@ mA g ⁻¹	cycle number							
N doped 3D		27.8	302	205	This work						
carbon	NCS-5		@ 50	@ 1000 @ 2000							
superstructure			6,00	(a) 1000 (a) 2000							
graphitic carbon	CNC	40	195	_	[3]						
nanocage	ene	@ 0.2 C	@ 0.2 C		[3]						
hard–soft	HCS-SC	67	230	200	[4]						
composite carbon	1105-50	@ 0.1 C	@ 0.5 C	@ 1C @ 200	ניין						
N/O dual-doped	NOHPH	25	365	118	[5]						
hard Carbon	С	23	@ 25	<i>ⓐ</i> 3000 <i>ⓐ</i> 4000	[5]						
N doped carbon	NCNF-	40	248	146	[6]						
nanofibers	650	49	@ 25	@ 2000 @ 4000							
N/O dual-doped	NOCN	47	464.9	160	[7]						
carbon network	NOCI	47	@ 50	@ 5000 @ 4000							
D-doped			202	157							
hierarchical	N-HPC	-	292	137	[8]						
porous carbon			@ 100	@2000@12000							
S-doped RGO	S-RGO-	(5	361	229	[9]						
sponges	600	63	@ 50	@1000 @500							
S/O codoped	DCM-	(17	226.6	108.4	[10]						
hard carbon	PCMS	61./	@ 50	@ 1000 @ 2000	[10]						
Phosphorus and			474	1(0							
oxygen dual-	PODG	22.6	4/4		[11]						
doped graphene			@ 30	@ 2000 @ 600							
few-layer F-			226.1	165.0							
doped graphene	FFGF	41.2	326.1	165.9	[12]						
foam			<i>(a)</i> 50	@ 500 @ 200	_						
Phosphorus											
doped N-rich	DALLC		419.3	270.4	[12]						
honeycomb-like	PNHC	56.9	@ 100	@ 1000 @ 2000	[13]						
carbon											
free-standing	NCCON		222	226							
nitrogen-doped	NCSCN	14.2	<i>323</i>	230	[14]						
carbon nanotube	Γ		@ 20	(<i>a</i>) 20 (<i>a</i>) 100							

Table S2 Comparison of the potassium-ion storage performances of the NCS-5 anode and carbon

anodes published in the relative literatures.

RGO: reduced graphene oxide; ICE: initial Coulombic efficiency.

"-" stands for unknown value.

 $1 \text{ C} = 279 \text{ mA g}^{-1}$

Note 9 Formation energies calculation of the three N-doped carbon via DFT

Calculations were based on the density functional theory (DFT) using the generalized gradient approximation [15] for the exchange–correlation potential prescribed by Perdew–Burke–Ernzerhof, which was implemented in DMol³ package [16]. Allelectron calculations were employed with the double numerical basis sets plus polarization functional (DNP). A supercell (5×5) with the periodic boundary conditions on the x–y plane was employed. The vacuum space was set with 20 Å in the z direction to avoid the interactions between periodic images. Parameter settings wee set by the previously reported method with the optimization results [17].

The formation energies of vacancy graphene and vacancy doped-graphene was calculated according to the following definition:

$$\Delta E_1 = E_{vacancy} - E_{pure} + E_C \qquad (1)$$

$$\Delta E_2 = E_{doped} - E_{vacancy} - E_N + E_C \qquad (2)$$

$$\Delta E_3 = E_{doped} - E_{pure} - E_N + E_C \qquad (3)$$

where $E_{vacancy}$ is the total energy of the vacancy graphene, E_{doped} is the total energy of the doped graphene, E_{pure} is the total energy of the pure graphene, and E_C is the total energy from C atom calculated from the corresponding pure/vacancy graphene, E_N was obtained from N in the gas phase (N₂ molecule). All these energies are always taken from simulations using the same basis set.

Fig. S12. Top views of the configurations of pure graphene P-C (a), vacancy graphene for C-5 (b), and vacancy graphene for C-6 (c). The density of states (DOS) for pristine C (d), vacancy graphene for C-5 (e), and vacancy graphene for C-6 (f).

Supplementary References

- S. Zeng, L. Guo, F. Cui, Z. Gao, J. Zhou, J. Shi. Template-free synthesis of crystalline polyimide spheres with radiate branches. Mater Lett. 64(5), 625-627 (2010). https://doi.org/10.1016/j.matlet.2009.12.024
- Q. Wu, J. Liu, C. Yuan, Q. Li, H.-g. Wang. Nitrogen-doped 3d flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries. Appl Surf Sci. 425, 1082-1088 (2017). <u>https://doi.org/10.1016/j.apsusc.2017.07.118</u>
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang, T. Zhou, J. Mao, W. K. Pang, Z. Guo, A. Li, J. Zhou, X. Chen, H. Song. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Advanced Energy Materials. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji. Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater. 27(26), 1700324 (2017). https://doi.org/10.1002/adfm.201700324
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang, D. Sun, S. Zheng. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling n/o dual-doped carbon network. Energy Storage Materials. 23, 46-54 (2019). <u>https://doi.org/10.1016/j.ensm.2019.05.037</u>
- X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu, S. Zeng, R. Xu, Y. Wu, S. Ye, Y. Feng, X. Cheng, Z. Peng, X. Li, Y. Yu. Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for highperformance potassium-ion batteries. Nano Lett. 19(8), 4965-4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
- Z. Liu, Y. Zeng, Q. Tang, A. Hu, K. Xiao, S. Zhang, W. Deng, B. Fan, Y. Zhu, X. Chen.
 Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for

high rate performance supercapacitors. J Power Sources. **361**, 70-79 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.058

- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Advanced Energy Materials. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing, Q.-c. Zhuang. Phosphorus and oxygen dualdoped graphene as superior anode material for room-temperature potassium-ion batteries. Journal of Materials Chemistry A. 5(17), 7854-7861 (2017). https://doi.org/10.1039/C7TA01108C
- Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang, Y. Qian. Direct synthesis of few-layer fdoped graphene foam and its lithium/potassium storage properties. ACS Appl Mater Interfaces. 8(32), 20682-20690 (2016). <u>https://doi.org/10.1021/acsami.6b04763</u>
- H. He, D. Huang, Y. Tang, Q. Wang, X. Ji, H. Wang, Z. Guo. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy. 57, 728-736 (2019). https://doi.org/https://doi.org/10.1016/j.nanoen.2019.01.009
- X. Zhao, Y. Tang, C. Ni, J. Wang, A. Star, Y. Xu. Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Applied Energy Materials. 1(4), 1703-1707 (2018). https://doi.org/10.1021/acsaem.8b00182
- J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett. 77(18), 3865-3868 (1996). <u>https://doi.org/10.1103/PhysRevLett.77.3865</u>
- B. Delley. From molecules to solids with the dmol3 approach. The Journal of Chemical Physics. 113(18), 7756-7764 (2000). <u>https://doi.org/10.1063/1.1316015</u>
- Y. Tian, Y.-j. Liu, J.-x. Zhao, Y.-h. Ding. High stability and superior catalytic reactivity of nitrogen-doped graphene supporting pt nanoparticles as a catalyst for the oxygen reduction reaction: A density functional theory study. RSC Advances. 5(43), 34070-34077 (2015). <u>https://doi.org/10.1039/C5RA02585K</u>