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Note 1 Photograph of monomer salts 

 

Fig. S1. Photograph of monomer salts 

Note 2 Photograph of PI particles 

 

Fig. S2.  Photograph of PIs. 

Note 3 FT-IR and TGA analysis  

FT-IR spectra were recorded on a Bruker Tensor 27. Resolution was set to 2-4 cm-1, and spectra were 

recorded from 4000 to 600 cm-1. 
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Fig. S3. FT-IR spectra of monomer salt [ODA2+PMDA2-]. : typical monomer salt modes, ṽas ( Ar-

NH3+) ≈ 2840 cm-1, ṽs (Ar-NH3+) ≈ 2580 cm-1, ṽs(C=O, Ar-COO-) ≈ 1570 cm-1.  

 

 

Fig. S4. TGA curve of PI-5 tested in N2 atmosphere. 
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Note 4 SEM images  

 

Fig. S5. SEM images of (a) PI-1, (b) PI-2, (c) PI-4, (d) NCS-1, (e) NCS-2, (f) NCS-4. Scale bar: (a)- 

(c) 2 µm, (d)-(e) 200 nm.  

 

 

Fig. S6. SEM images of PI-6 
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Note 5 Nitrogen adsorption-desorption isotherms of NCSs  

 

Fig. S7. a) Nitrogen adsorption-desorption isotherms of the NCS-1. b) Pore size distribution of the 

NCS-1. c) Nitrogen adsorption-desorption isotherms of the NCS-3. d) Pore size distribution of the 

NCS-3.  
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Note 6 XPS and high-resolution XPS spectra of NCSs  

 

Fig. S8. XPS survey spectra. a) Survey spectrum of XPS of NCSs. N 1s high-resolution XPS spectra 

of NCSs: b) NCS-3, c) NCS-1. C 1s high-resolution XPS spectra of NCSs: d) NCS-5, e) NCS-3, d) 

NCS-1. O 1s high-resolution XPS spectra of NCSs: g) NCS-5, h) NCS-3, e) NCS-1.  

Note 7 Characteristics of NCSs  

Table S1 Content of element by EA and N-doped type by XPS 

Sample C (%) N (%) H (%) O (%) 

N type (%) 

N-5  N-6  N-X N-Q  

NCS-5 76.18 9.12 3.22 11.48 52.0 40.7 1.1 6.2 

NCS-3 76.59 8.88 3.68 10.85 50.6 39.2 3.5 6.7 

NCS-1 76.89 8.45 3.91 10.75 50.1 38.9 3.7 7.5 
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Fig. S9 presents the FTIR spectrum of PI and NCSs. The bands of PI at 1780, 1720 cm-1 are 

attributed to the stretching and bending vibration of C=O, the peak at 1381 cm-1 belongs to the 

stretching vibration of C-N-C. The other peaks of PI at 1502 and 1248 cm-1 are assigned to the C-C 

stretching of benzene ring and the C-O-C stretching, respectively [1]. Due to the high thermal 

stability of PI, the weak characteristic peak of the C=O and C-H bond remained in the NCSs after 

600 ℃ pyrolysis, as shown in the FTIR spectrum. The emerging peaks of NCSs at 1500–1610 cm-1 

and 1000–1320 cm-1 are assigned to the stretching vibration of the C=C bond and C-N bond derived 

from the pyrolysis [2]. FTIR results indicate the high oxygen-containing and nitrogen-containing 

groups of NCSs, which is in accordance with the high O content from EA result and lowest 

graphitization degree from Raman analysis (ID/IG=2.9). 

 

Fig. S9. FI-IR spectrum of PI and NCSs 
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Note 8 Electrochemical performance of NCSs as PIB anodes. 

 

Fig. S10. Electrochemical performance of NCSs as PIB anodes in half cells. a-c) Cyclic voltammetry 

(CV) of the NCSs electrode for PIBs between 0.01 V and 3.0 V with a scan rate of 0.1 mV/s. d) 

Potassiation and depotassiation profiles of the NCS-5 electrode for the first cycle at 50 mA g-1.  

 

Fig. S11 EIS analysis of NCS-5. 
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Table S2 Comparison of the potassium-ion storage performances of the NCS-5 anode and carbon 

anodes published in the relative literatures. 

Materials 
Sample 

labels 

ICE (%) 

@ 50 mA g-1 

Reversible 

capacities  

mA h g-1 

@ mA g-1 

Cyclability (capacity 

retention)  

mA h g-1 @ mA g-1@ 

cycle number 

Refs 

 

N doped 3D 

carbon 

superstructure 

NCS-5 27.8 
302 

@ 50 

205 

@ 1000 @ 2000  
This work 

graphitic carbon 

nanocage 
CNC 

40 

@ 0.2 C  

195  

@ 0.2 C 
-  [3] 

hard–soft 

composite carbon 
HCS-SC 

67 

@ 0.1 C 

230 

@ 0.5 C 

200 

@ 1C @ 200 
 [4] 

N/O dual-doped 

hard Carbon 

NOHPH

C 
25 

365  

@ 25  

118 

@ 3000 @ 4000  
 [5] 

N doped carbon 

nanofibers 

NCNF-

650 
49 

248  

 @ 25  

146  

 @ 2000 @ 4000  
 [6] 

N/O dual-doped 

carbon network 
NOCN 47 

464.9  

@ 50  

160  

 @ 5000 @ 4000  
 [7] 

D-doped 

hierarchical 

porous carbon 

N-HPC - 
292 

 @ 100  

157 

 @2000@ 12000  
 [8] 

S-doped RGO 

sponges 

S-RGO-

600 
65 

361 

 @ 50  

229  

@1000 @500  
 [9] 

S/O codoped 

hard carbon 
PCMs 61.7 

226.6 

@ 50  

108.4  

@ 1000 @ 2000 
 [10] 

Phosphorus and 

oxygen dual-

doped graphene 

PODG 22.6 
474 

@ 50  

160  

@ 2000 @ 600 
 [11] 

few-layer F-

doped graphene 

foam 

FFGF 41.2 
326.1 

@ 50  

165.9  

@ 500 @ 200 
 [12] 

Phosphorus 

doped N-rich 

honeycomb-like 

carbon 

PNHC 
  

56.9 

419.3  

@ 100  

270.4 

 @ 1000 @ 2000 
 [13] 

free-standing 

nitrogen-doped 

carbon nanotube 

NCSCN

T 
14.2 

323 

@ 20 

236 

@ 20 @100 
 [14] 

RGO: reduced graphene oxide; ICE: initial Coulombic efficiency. 

“-” stands for unknown value.  

1 C = 279 mA g-1 
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Note 9 Formation energies calculation of the three N-doped carbon via DFT 

Calculations were based on the density functional theory (DFT) using the generalized gradient 

approximation [15] for the exchange–correlation potential prescribed by Perdew–Burke–Ernzerhof, 

which was implemented in DMol3 package [16]. Allelectron calculations were employed with the 

double numerical basis sets plus polarization functional (DNP). A supercell (5×5) with the periodic 

boundary conditions on the x–y plane was employed. The vacuum space was set with 20 Å in the z 

direction to avoid the interactions between periodic images. Parameter settings wee set by the 

previously reported method with the optimization results [17].  

The formation energies of vacancy graphene and vacancy doped-graphene was calculated 

according to the following definition:  

∆𝐸1 = 𝐸𝑣𝑎𝑐𝑎𝑛𝑐𝑦 − 𝐸𝑝𝑢𝑟𝑒 + 𝐸𝐶      (1) 

∆𝐸2 = 𝐸𝑑𝑜𝑝𝑒𝑑 − 𝐸𝑣𝑎𝑐𝑎𝑛𝑐𝑦 − 𝐸𝑁 + 𝐸𝐶  (2)  

∆𝐸3 = 𝐸𝑑𝑜𝑝𝑒𝑑 − 𝐸𝑝𝑢𝑟𝑒 − 𝐸𝑁 + 𝐸𝐶     (3) 

where 𝐸𝑣𝑎𝑐𝑎𝑛𝑐𝑦 is the total energy of the vacancy graphene, 𝐸𝑑𝑜𝑝𝑒𝑑 is the total energy of the doped 

graphene, 𝐸𝑝𝑢𝑟𝑒 is the total energy of the pure graphene, and 𝐸𝐶 is the total energy from C atom 

calculated from the corresponding pure/vacancy graphene,  𝐸𝑁  was obtained from N in the gas 

phase (N2 molecule). All these energies are always taken from simulations using the same basis set. 

 

Fig. S12. Top views of the configurations of pure graphene P-C (a), vacancy graphene for C-5 (b), 

and vacancy graphene for C-6 (c). The density of states (DOS) for pristine C (d), vacancy graphene 

for C-5 (e), and vacancy graphene for C-6 (f). 
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