Supporting Information for

Electron-Induced Perpendicular Graphene Sheets Embedded Porous

Carbon Film for Flexible Touch Sensors

Sicheng Chen¹, Yunfei Wang¹, Lei Yang^{1, *}, Fouad Karouta², Kun Sun¹

¹Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

²Research School of Physics, The Australian National University, Canberra, 2601 ACT Australia

*Corresponding author. E-mail: <u>yanglxjtu@xjtu.edu.cn</u> (Lei Yang)

Supplementary Figures

Fig. S1 Schematic illustrations of the ECR sputtering system

Fig. S2 a Schametics of accumulating carbon atoms and **b** Field-emission scanning electron micrographs of EIPG cross-section geometry and **c** Morphology of EIG layers under different ratio aspect (Ratio aspect=pit-depth/pit-diameter)

Fig. S3 Capacitance change when blowing on the sensor

Fig. S4 Durability of capacitance under long-time loading process

Fig. S5 Sound detection application of the EIPG sensor

Fig. S6 Capacitance changes when approaching and leaving (Capacitance decreased rapidly when adjacent objects approach, like hyperbolic curve as the element of "1/D", the turning point of leaving is slightly higher than that of approaching for the charge exchange between capacitance surface and adjacent object)

Fig. S7 Schematic illustrations for the working process of bimodal function when detecting adjacent objects using single-electrode connection