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Abstract In this work, BaWO4 nanospheres were successfully prepared by hydrothermal process. The bipolar resistive

switching behavior of Ag/BaWO4/FTO device is observed. Moreover, this resistive switching behavior can be modulated

by white light. The device can maintain superior stability in the dark and under white-light illumination. This study is

useful for developing the light-controlled nonvolatile memory devices.
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1 Introduction

Reversible resistive-switching effect is a promising can-

didate for next-generation nonvolatile memories [1]. The

resistive switching behavior, in which the reversible

switching between a high-resistance state (HRS) and a

low-resistance state (LRS) can be achieved by the applied

voltage, is an attractive subject of scientific and technical

research [2–6]. The resistive switching is classified into

unipolar resistive switching and bipolar resistive switch-

ing [7]. The resistive switching memory cell usually has

simple structure, in which an insulating oxide is sand-

wiched between two metal electrodes [8]. Therefore, the

resistive switching device is suitable for wide application

because of the simple preparation steps and relatively low

cost.

In the past few years, a new control method (light

controlled) has been involved in the resistive switching

memory device. Ungureanu firstly reported the light-

controlled resistive switching memory in Pd/Al2O3/SiO2

device [9]. At the same time, Adachi and Park also added

the light as extra control parameter in the switching

memory device based on ZnO nanorods [10–12]. In

addition, our group also found that light can act as a

control method in some resistive switching systems [13–

15]. The light-controlled resistive switching effect pro-

vides the potential for light-controlled nonvolatile mem-

ory device, which may be a promising developing trend

of information science and storage technology. In addi-

tion, the white light, which is the most ordinary light

source, is widely used.

BaWO4 is a wide gap semiconductor with Eg [4.9 eV

and has a Scheelite structure [16, 17]. BaWO4 is an

important material in the electro-optical industry owing to

its emission of blue luminescence [18–23]. Therefore,

BaWO4 received more and more research interest [24].

Although there are many reports about various appli-

cations in BaWO4 nanostructure in previous works, the

resistive switching properties of BaWO4 have not been

reported yet. Herein we present the reversible bipolar

resistive-switching effect in Ag/BaWO4/FTO device.

Moreover, the resistive-switching effect can be controlled

by white-light illumination.
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2 Experimental

2.1 Preparation of BaWO4 Nanospheres

The BaWO4 nanospheres were prepared by a hydrothermal

process using cetyltrimethylammonium bromide (CTAB)

as the surfactant. All the chemicals used in this work were

of analytical grade and used directly without further puri-

fication. The distilled water was used as a solvent

throughout the experiment. Firstly, Ba(NO3)2 (0.01 M) and

Na2WO4�2H2O (0.01 M) were dissolved in 40 ml distilled

water under stirring continuously. Then 0.5 g cationic

surfactant cetyltrimethylammonium bromide (CTAB) was

added into above solution under strong stirring. After

continuous stirring for 2 h, the solution was transferred to a

50-ml sealed Teflon-lined steel autoclave. Then, the sealed

Teflon-lined steel autoclave was heated and kept at 200 �C
for 72 h. After the autoclave was cooled to room temper-

ature, the powder obtained was washed with distilled water

and ethanol and dried at 60 �C for 12 h.

2.2 Preparation of Ag/BaWO4/FTO Device

Firstly, FTO substrates were cleaned by acetone, ethanol,

and deionized water, and subsequently dried on the spin

coater. Secondly, BaWO4 films were prepared on FTO

substrate by spin-coating method. The detail preparation

process of BaWO4 films is as follows: Firstly, we grinded

the as-prepared BaWO4 nanospheres powder for 2 h. Next,

we dissolved the powder in toluene solution to prepare

precursor gel. Then the precursor gel was spin-coated on

the FTO substrate. The spin-coating process at 5,000 rpm

for 10 s was used to prepare BaWO4 films with thickness

of about 2 lm. Then these samples were subsequently

dried at 60 �C in vacuum for overnight. The thickness of

the BaWO4 film was detected by the step profiler.

3 Characterizations

Crystal structure of BaWO4 nanospheres was characterized

by X-ray diffraction (XRD) with Cu Ka radiation at room

temperature. Surface morphology of BaWO4 nanospheres

was characterized using scanning electron microscope

(SEM). Microstructure, nanosphere size, selected area

electron diffraction (SAED) pattern, and the energy-dis-

persive X-ray spectroscopy (EDX) spectra of the BaWO4

nanospheres were observed by transmission electron

microscopy (TEM) at an acceleration voltage of 200 kV. In

the test of resistive switching characterizations, Ag is top

electrode and FTO is bottom electrode, as shown in Fig. 1.

Ag electrodes with area of *1 mm2 and thickness of

200 nm were prepared by vacuum deposition. And the

preparation process of Ag electrodes is as follows: Firstly,

we covered a mask on surface of BaWO4/FTO. Secondly,

we put it into the vacuum sputtering system to grow Ag

electrodes. Finally, we chose the superior electrodes for

characterization. Current–voltage (I–V) and resistance

cycles curves were tested using the electrochemical

workstation (CHI) at room temperature. In addition, we

used an ordinary filament lamp as light source. The

wavelength range of light is 400–760 nm.

4 Results and Discussion

Figure 1 shows the schematic representation of the device

for I–V measurement, where the BaWO4 film with thick-

ness of *2 lm was spin coated on the FTO substrate, and

the electrodes of Ag with the area of less than 1 mm2 and

thickness of 200 nm were deposited onto the BaWO4 film.

Scanning electron microscope (SEM) image of the as-

prepared BaWO4 nanospheres is shown in Fig. 2a. The as-

prepared sample consists of BaWO4 nanospheres. And the

size of these nanospheres is about 180–220 nm from the

transmission electron microscopy (TEM) image in Fig. 2b.

From the high-resolution transmission electron microscopy

(HRTEM) image of BaWO4 nanospheres in Fig. 2c, the

lattice spacing between two planes is *0.25 nm, corre-

sponding to the (101) planes of BaWO4. Figure 2d exhibits

the selected area electron diffraction (SAED) pattern of the

BaWO4 nanospheres, where the corresponding nearest four

spots in the figure can be indexed to (110), (220), (002),

and (004) planes of BaWO4, indicating that as-prepared

BaWO4 nanospheres possess an excellent single-crystal

structure.

The crystalline structure of the BaWO4 nanospheres was

characterized by XRD. Figure 3a exhibits the XRD pattern

of as-prepared BaWO4 nanospheres. There are only the

peaks of BaWO4, which reveals the purity of the BaWO4

nanospheres. The XRD demonstrates the characteristic

diffraction peaks of BaWO4. Moreover, the XRD profile

matches very well with that in the reported work [25–28].

The result indicates that the BaWO4 nanospheres have a

Glass
FTO
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BaWO4

CHI

Fig. 1 The schematic representation of I–V measurement
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Fig. 2 a The SEM image of the as-prepared BaWO4 nanospheres. b The TEM image of BaWO4 nanospheres. c The HRTEM of a typical portion

recorded in the rectangular area of part (b). d The SAED pattern of BaWO4 nanospheres
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Fig. 3 a The XRD of as-prepared BaWO4 nanospheres at room temperature. b The EDX spectrum of BaWO4 nanospheres
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tetragonal scheelite unit cell (a = 5.62 ± 0.05 Å,

c = 12.71 ± 0.07 Å) according to the peak positions and

their relative intensities, which is consistent with the

reported value (JCPDS Cards 08-457). Therefore, the

product contains only pure BaWO4, and the sharp peaks

demonstrate good crystallinity of the BaWO4 nanospheres.

The composition of BaWO4 nanospheres was further con-

firmed by elemental analysis carried out with energy-dis-

persive X-ray spectra (EDX). The EDX data in Fig. 3b

confirm that the compositions of as-prepared product are

only Ba, W, and O with an atomic ratio of 0.93:0.98:4,

which is close to the stoichiometric ratio of BaWO4.

Figure 4a displays the I–V characteristics curves of Ag/

BaWO4/FTO device in linear scale in the dark and under

white-light illumination with power density of 30 mW

cm-2, we can see that I–V curves exhibit asymmetric

behavior with significant hysteresis. The arrows in the

figure denote the sweeping direction of voltage.

Figure 4b presents a corresponding I–V curve of Ag/

BaWO4/FTO device in logarithmic scale. The arrows in the

figure denote the sweeping direction of voltage. The Ag/

BaWO4/FTO device shows obvious resistive switching

behavior in the dark. A sudden current increasing occurs at

3.0 V (VSet), indicating a resistive switching from the high-

resistance state (HRS or ‘OFF’) to the low-resistance state

(LRS or ‘ON’), which was called the ‘‘Set’’ process. When

the applied voltage sweeps from zero to negative voltage of

about -3.5 V (VReset), the device can return to the HRS,

which was called the ‘‘Reset’’ process. The resistances of

HRS and LRS at negative bias are much larger than those

at positive bias. During the successive ‘‘Set’’ and ‘‘Reset’’

cycles on the same device, the device shows the identical

I–V curves. The VReset and VSet are almost unchanged in

subsequent cycles for the same device (not shown here).

Moreover, the resistive switching behavior of Ag/BaWO4/

FTO device is improved by white-light illumination. The I–

V curve under white-light illumination is more symmetrical

than that in the dark. And the resistive switching behavior

at negative bias is more obvious than that in the dark.

Furthermore, the resistance of LRS at negative bias is

nearly as same as that at positive bias. In addition, the VSet

(3.1 V) under white-light illumination is larger than that

(3.0 V) in the dark.

In order to estimate the probable practicability of the

white-light-controlled resistive switching behaviors of the

Ag/BaWO4/FTO device, the resistance cycles number

curves for the HRS and LRS with a positive bias of 1.0 V

in the dark and under illumination with power density of 30

mW cm-2 are tested and shown in Fig. 5. The resistances

are about 25 kX at the LRS (ON state) and 400 kX at the

HRS (OFF state) in the dark, indicating the OFF/ON-state

resistance ratio is up to 16. However, the resistances are

about 20 kX at the LRS (ON state) and 300 kX at the HRS

(OFF state) under white-light illumination, suggesting the

OFF/ON-state resistance ratio is 15. More importantly, the

resistances of the LRS (ON state) and the HRS (OFF state)

are nearly unchanged after 50 cycles for the device in the

dark and under white-light illumination, which indicates

the good stability of the white-light-controlled resistive

switching behaviors of the Ag/BaWO4/FTO device.

According to the above results, the steady white-light-

controlled resistive switching behavior in Ag/BaWO4/FTO
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structure provides the potential for light-controlled non-

volatile optoelectronic memory applications.

The mechanism for resistive switching in a metal/oxi-

des/oxides structure has been extensively investigated [8,

29–33]. In our works, current–voltage curve of the Ag/

BaWO4/Ag structure is symmetrically linear without hys-

teresis (not shown here), indicating it is Ohmic contact

between Ag and BaWO4. Therefore, the asymmetric

behavior of I–V curve of Ag/BaWO4/FTO in the dark

indicates that a Schottky barrier is formed at the interface

of BaWO4/FTO. The bipolar resistive switching behavior

of Ag/BaWO4/FTO should result from the trapped and

detrapped charge in the Schottky-like depletion layer [26–

31]. Moreover, the white light can generate a large number

of charges, which can change the trapped state and de-

trapped state in the Schottky-like depletion layer [9–12].

Therefore, the white light can modulate the resistive

switching behavior of Ag/BaWO4/FTO.

5 Conclusions

BaWO4 nanospheres were prepared by hydrothermal pro-

cess. The reversible bipolar resistive switching character-

istics of Ag/BaWO4/FTO device were observed. In

particularly, the resistance switching behavior can be

controlled by white-light illumination. Therefore, the

superior resistance switching characteristics of the Ag/

BaWO4/FTO device hold a promise for light-controlled

nonvolatile memory applications.
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