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Abstract This mini-review highlights selectively the recent research progress in the composites of LiFePO4 and

graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are

summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the

composites are discussed briefly. The possible ongoing researches in area are speculated upon.

Keywords Lithium iron phosphate � Graphene � Composite � Electrochemical property � Lithium-ion battery

1 Introduction

Environmental pollution and energy crisis have been

severely accumulated due to the excessive utilization of

fossil fuel resource. To overcome these problems, novel

clear energy resource and related energy conversion and

storage materials and devices are highly demanded. Among

the diverse energy storage devices, lithium-ion batteries

(LIBs) have been studied overwhelmingly, and certain

kinds of LIBs have been commercialized already. LiCoO2

is one of the main LIB cathode materials used in industrial

scale, but LiCoO2 could pollute the environment during

production process, overcharge during usage thus causing

potential safety hazard, and cobalt is expensive for its

limited storage [1]. Therefore, looking for alternative

materials of LiCoO2 is always the research hotspot. With

the similar crystal structure as LiCoO2, LiNiO2 has an

advantage of lower price, but there are difficulties in the

synthesis, poor structure, thermal, and cycling stability [2].

Spinel LiMn2O4 has good security, ease of synthesis, etc.,

however, because of the presence of John–Teller effect in

lattice during the charge/discharge, its structure is prone to

distort, resulting in the rapid decay of the capacity, espe-

cially at higher temperatures [3]. Therefore, the exploits of

high-performance electrode materials, electrolytes, and

membrane for LIBs have attracted great attention during

last decades [4]. Lithium iron phosphate (LiFePO4, LFP)

with olivine structure is one of the most promising cathode

materials for LIBs, owing to its high theoretical capacity

(170 mAh g-1), acceptable operating voltage (3.4 V vs.

Li?/Li), good cycling stability, low toxicity, good thermal

stability, and low cost. And the biggest advantage of LFP is

non-toxic compared to LiMPO4 (M = Co, Mn, and Ni) [5].

Unfortunately, the LFP shows intrinsically poor electrical

conductivity (about 10-9–10-10 S cm-1) and low Li?

transport capability (approximately 10-14 cm2 s-1) [6, 7],

which constrains its electrochemical performance, espe-

cially the rate capability, as cathode in LIBs [4]. So far,

numerous attempts have been made to speed up the Li

diffusion within LFP crystals and to increase its electrical

conductance by doping the LFP with other metal ions [8],

reduction LFP particle size [9], coating conductive carbon

layer [10–13] and aliovalent doping [8, 14–16]. It was

demonstrated that the metal ion doping is not only able to

expand the Li? diffusion channel, but also increase the

output voltage of LFP. The reduction of LFP particle size

can shorten the Li? diffusion path, but the disadvantage is
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to introduce the interface effect [17]. The carbon coating

has been successfully used to improve the electrical con-

ductivity of LFP crystals, though it may lower the energy

density of the LIBs [4]. Additionally, the carbon coating

can be easily accomplished through an in situ pyrolysis of

organic carbon precursors, such as sucrose [18], glucose

[19], starch [20], citric acid [21–23], ascorbic acid [24],

adipic acid [25], pitch carbon [18], polypropylene [24],

polypyrrole [26], polyvinyl alcohol [13], polythiophene

[27], and polyacene [28] on the LFP. However, the com-

position, graphitization extent, thickness, surface func-

tionality, and uniformity of the carbon coating layer are

hard to be controlled in practice, which, on the other hand,

affect significantly the electrochemical performance of

LIBs in practice [29–31].

Having high carrier (ion and electron) mobility, good

mechanical, and chemical/physical properties, graphene

and derivatives have shown great potential in LIBs, and

there are a large number of the research works related to

the area so far [32, 33]. In this mini-review, we summarize

the recent progress in studies on the LFP/graphene com-

posites that is considered as one of the most promised

cathode materials for high-performance LIBs. We first

overview the synthetic protocols of the composites devel-

oped so far. Then, the structural and morphology characters

of graphene sheets that may affect the property of the

composites are discussed briefly. Finally, the possible

ongoing developments and challenges in this area are

speculated upon.

2 LFP/Graphene Composites Prepared Through

Physical Mixing

The crystalline LFP particles used in LIB cathode can be

routinely prepared through sol–gel, hydrothermal, or solid-

state reactions using different precursors [34–36]. The

graphene sheets can usually be generated through

mechanical exfoliation of the bulk graphite [37], chemical

vapor deposition, CVD [38–40], chemical reduction of

graphene oxide, GO [41–44], and electrochemical synthe-

sis [45–47]. For the bulk scale preparation of the individual

graphene sheets, the chemical reduction of the GO is often

used [41–43]. To obtain the LFP/graphene composites,

there has been much work toward the simple physical

mixing of the LFP particles and graphene sheets. For

example, using LFP nanoparticles and chemically reduced

GO (rGO) sheets as raw materials, Zhou et al. developed a

facile procedure, including the physically mixing of LFP

and rGO suspensions to generate the slurry with certain

LFP–rGO ratio, the spray-drying the slurry, and finally the

thermal annealing in Ar (Fig. 1) [48, 49]. It was demon-

strated that in the as-prepared composites the LFP

nanoparticles were coated (actually wrapped) homoge-

neously with rGO sheets forming three-dimensional (3D)

network, a favorable structural motif for facilitating the

electron and lithium-ion migration throughout the com-

posites. The LIB cathode prepared with the as-generated

composite showed a specific capacity of 70 mAh g-1 at

60 C discharge rate and exhibited a capacity decay rate of

\15 % when cycled at 10 C charging and 20 C dis-

charging rate for 1,000 cycles [48]. Considering simple and

scalable advantages, this strategy may be developed into a

general way to prepare other graphene based composites

for LIB cathodes, such as the composites of LiCoO2/

graphene, LiMn2O4/graphene.

Although the rGO sheets can be readily prepared in bulk

scale, its low electrical conductivity is a drawback for

modification of the LFP cathode for LIBs. Therefore, Tang

et al. [50] prepared first the multilayered graphene (MLG)

with 3D network structure using commercially available

porous Ni as template, and then intercalated the LFP

nanoparticles within the 3D graphene to get finally

graphene/LFP composites (Fig. 2). The high electrical

conductivity (*600 S cm-1) and unique structure of the

as-prepared 3D graphene afford the composite with good

electric and electrochemical properties. In contrast to the

pure LFP, the cathode made of the 3D graphene/LFP

composites showed higher specific capacity. The specific

discharge capacities can reach to 158, 150, 144, and

135 mAh g-1 at discharging rate of 0.2, 1, 2, and 5 C,

respectively, which are much higher than those of the pure

LFP. Even at the rate of 10 C, the specific discharge

capacity still remains at 109 mAh g-1, revealing the

improved rate performance of 3D graphene/LFP, too.

However, the laborious and costly preparation procedure

may limit the practical application of such kind of the

composite.

The graphene and rGO modifications can improve

somehow the electrochemical performances of LFP,

especially the rate capability, but the overall properties of

the LFP/graphene composites seem depend strongly on the

preparation procedures, and also the raw materials used

[51–55]. To get insight into the effects of the graphene on

the electrical and electrochemical properties of the LFP/

graphene composites, Bi and colleagues prepared three

kinds of the graphene sheets through CVD, wurtzite-type

reductive coupling (WRC), and chemical reduction of the

GO (rGO), and prepared the composites of LFP with the

as-prepared different graphene sheets [56]. For compari-

son, they prepared also carbon black (CB)-coated LFP

with the carbon layer thickness of 10–30 nm. It was

demonstrated that the composite with CVD graphene

showed an excellent electrical conductivity of

1,097 S cm-1, which is much larger than those with WRC

graphene (3.0 S cm-1), rGO (1.2 S cm-1), and CB
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(0.5 S cm-1). In addition, electrochemical impedance

spectroscopy measurement revealed, as shown in Fig. 3,

the resistance of the cathode composed of LFP with CVD

graphene is about 92 X, which is much smaller than those

of LFP with WRC graphene (142 X), LFP with rGO

(161 X), and LFP coated with CB (199 X). Accordingly,

the CVD graphene-modified LFP cathodes exhibit larger

reversible capacities of 132 and 80 mAh g-1 at even high

charge/discharge rates of 1 and 20 C [56]. The reason

might be that the CVD graphene has better interface

contacting with active materials (LFP), resulting in better

electrical conductivity and enhanced charge transfer.

Spray
dryingMixing

Annealing

Graphene
oxide

LiFePO4

LiFePO4/graphene LiFePO4/graphene oxide

e−
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Fig. 1 Schematic illustration of

the preparation process and the

proposed microstructure of

LFP/graphene composite [48]

Fig. 2 SEM images of a the Ni

foam template, b 3D graphene

network, c 3D graphene/

LiFePO4 composite, and d the

electrode surface of 3D

graphene/LiFePO4 [50]
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3 Growing LFP Particles In Situ on Graphene

As aforementioned, through simple physical mixing, the

LFP/graphene composites can be prepared routinely, and

the electrical and electrochemical properties of the com-

posites as cathode for LIBs could also be improved

somehow. However, their rate capability and cycling sta-

bility seem not significantly enhanced. The reason might be

that the graphene sheets contact the LFP particles loosely

through weak physical interactions. Therefore, if the LFP

particles were tightly anchored onto or entirely encapsu-

lated into the pristine graphene sheets, the electrical and

electrochemical properties of LFP should be greatly

enhanced. Fortunately, several procedures have been pro-

posed for growing the LFP particles in situ on the surface

of graphene [14, 57–60].

For example, through a high temperature solid chemical

reaction, Wang et al., created LFP nanoparticles in situ on

the surface of rGO sheets [57]. It was found that the LFP

nanoparticles randomly distributed on the rGO sheets with

the average size of 200 nm. The composites exhibited an

initial discharge capacity of 161 mAh g-1 at 0.1 C and the

capacity retained 70 mAh g-1 even at high rate of 50 C

[57]. Similarly, Xu et al. [14] prepared graphene-encap-

sulated LFP nanospheres by a solid-state reaction using

GO-encapsulated FeOOH, LiCH3COO�2H2O, NH4H2PO4

(in molar ratio = 1:1:1) as raw materials. They showed the

LFP nanospheres (*20 nm in diameter) were wrapped

tightly with a 3D graphene network. The as-prepared

graphene-encapsulated LFP showed decent specific

capacities of 166.6, 108.6, and 90.6 mAh g-1 at 0.1, 5, and

10 C, respectively, and the capacity decay can maintain at

\9 % when cycled at 5 and 10 C charge/discharge rates

for 300 times.

LFP can also be grown in situ on graphene sheets

through wet chemical approaches. For instance, Wang et al.

[58] prepared first the suspension containing LiOH,

FeSO4�7H2O, H3PO4, ascorbic acid, and GO, in which the

molar ratio of Li:Fe:P was adjusted to 3:1:1, and the weight

ratio of GO to LFP was 8:92. The mixture was then

transferred into a Teflon-lined stainless steel autoclave and

heated at 200 �C for 5 h. The LFP nanoparticles were

grown on the graphene sheets, and the as-prepared LFP/

rGO composite as cathode exhibited also excellent elec-

trochemical performances with capacities of 160.3 and

81.5 mAh g-1 at 0.1 and 10 C rates, respectively. A sim-

ilar protocol was also developed by Ding et al. [60].

In steading of the aqueous solution, Oh et al. [59]

developed a low temperature polyol method using tetra-

ethylene glycol [HO(CH2CH2O)3CH2CH2OH] as solvent

to grow the LFP particles on graphene and the procedure is

schematically illustrated in Fig. 4. In comparison, the LFP

particles as-generated have unique nanorod-like morphol-

ogy. The unique nanorod morphology, moderate size dis-

tribution, and uniform graphene coating enhanced the

electrical and electrochemical properties tremendously.

The specific capacities can reach up to 164, 156.7, and

121.5 mAh g-1 at current rates of 0.1, 1, and 10 C,

respectively, with capacity retention ratios over 99 % after

100 cycles.

Significantly, the LFP/graphene composites assuming

more complicated 3D hierarchical structure have been

prepared through a facile template-free sol–gel procedure,

as shown in Fig. 5 [61]. The approach for LFP/G com-

posite, schematically illustrated in Fig. 5a, starts with the

dispersion of graphene sheets in deionized water, pro-

ceeds with the self-assembly of graphene with the LFP

precursor, and ends with the crystallization of the LFP/G

precursors. CO and CO2 were evolved from the degra-

dation of these precursors through annealing, resulting in

the formation of a porous 3D network to obtain the final

LFP/G product. A 3D cross-sectional view of LFP for-

mation is shown in Fig. 5b. The high resolution scanning

electron microscopy (SEM) and transmission electron

microscopy (TEM) illustrated that the graphene sheets

were dispersed uniformly into the pores of LFP (see

Fig. 6). In comparison with porous LFP, the LFP/graph-

ene composite shows significantly enhanced Li-ion

insertion/extraction kinetics. More generally, the as-

developed method seems applicable to other graphene-

based composite material fabrication.

4 Growing Graphene In Situ on LFP

As mentioned above, no matter using the physical mixing

of LFP with graphene sheets or the in situ growing of the

LFP(CVD GR+CB)
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Fig. 3 Electrochemical impedance spectra of LFP (CVD GR ? CB),

LFP (WRC GR ? CB), LFP (rGO ? CB) and LFP (CB) cathodes

[56]
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LFP on graphene sheets, the preparation of individual

graphene sheets is prerequisite. Additionally, the individual

graphene sheets usually aggregate easily, which affects the

distribution of the graphene sheets within the composites

that influence finally the electrochemical performance of

the composites [62, 63]. To overcome the shortcomings, a

bottom-up strategy was designed to grow in situ the

graphene sheets on LFP surface. It was reported that using

the dodecylamine bilayers deposited on the LFP as carbon

source the MLG sheets were generated in situ on the LFP

surface under high temperature graphitizing in inert

atmosphere [64]. It is worth pointing out that the formation

of graphene layers seems catalyzed by the Fe species from

LFP at high temperature. The experimental data also

demonstrated that such a precisely designed LFP/graphene

composite shows a strikingly high electrical conductivity

of 18.9 S cm-1 (in comparison with 10-9 S cm-1 of pure

LFP), a high lithium-ion capacity of 168 mAh g-1 (very

close to its theoretical capacity of 170 mAh g-1 of LFP) at

the 0.5 C rate, and a high rate capacity of 115 mAh g-1 at

the 10 C rate. Moreover, the as-prepared LFP/graphene

composite shows high cycling stability over the composites

prepared through other methods.

Similarly, using glucose as carbon source and FeSO4 as

catalyst, Li et al. [31] prepared graphene on LFP through

in situ catalytic pyrolysis and graphitization under Ar/H2

(95:5) at 750 �C, see Fig. 7. It was demonstrated that the

as-grown graphene sheets has an average thickness of

about 2.5 nm (about eight–nine layers). The graphene

sheets not only coat uniformly the LFP surface, but also

bridge the adjacent LFP particles together forming 3D

network. Owing to the unique structure, as depicted in

Fig. 7, the as-prepared LFP/graphene composite exhibited

even better electrochemical properties. The reversible

capacity is of 167.7 mAh g-1, and shows high rate per-

formance and prolonged cycling life as shown in Fig. 8.

5 Effects of the Structural and Morphology

of Graphene Sheets on the Electrical

and Electrochemical Performances of LFP/Graphene

Composites

It is well known that the graphene is a typical anisotropic

material. The electron and lithium-ion transportations along

the longitudinal and horizontal (in plane) directions should

be different [65, 66]. Thus, the orientation of the graphene

sheets on the LFP surface may severely affect the electro-

chemical performance of the composites as cathode.

C8H18O5

(Li-CH3COO)
[Fe-(CH3COO)2]

(H3PO4)

Graphene
oxide

Magnetic stirring Ultra sonication Magnetic stirring

Reflux

Heating mantle

Polyol methodWashing

Fig. 4 Schematic illustration of

typical procedures used to

prepare graphene-wrapped LFP

nanorod [59]
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Actually, it was reported that the Li? diffusion through a

defect-free perfect graphitic plane is rather limited [67].

However, the LFP coated with graphene sheets exhibit

usually the enhanced electrochemical properties as cathode

in LIBs. To explain the doubt, Takamura et al. [68] proposed

that there should be nanoholes in the graphene layers

allowing Li? to be very easily inserted and extracted via the

holes, which was experimentally verified by the HRTEM

analysis of the graphene used. To get insight the lithium

diffusion pathway through the basal plane of graphene layers

Fig. 6 a TEM image of graphene. b SEM images of graphene. c, d Porous LFP at different magnifications. e, f LFP/graphene composite at

different magnifications [61]
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Fig. 7 A schematic drawing

(not to scale) of the overall

preparation of the LFP/graphene

composite through an in situ

growing of graphene on the LFP

reaction [31]

Nano-Micro Lett. (2014) 6(4):316–326 321

123



and the influence of defect population, Yao et al. [67] pre-

pared monolayer graphene and MLG, respectively. Com-

bining the experimental data and density functional theory

calculations, they showed that basal plane hindered lithium-

ion diffusion with a high diffusion barrier height, whereas

vacancies and defects can be shortcuts for lithium-ion dif-

fusion as shown in Fig. 9.

Actually, the lateral size of graphene sheets is also a key

factor influencing the electrochemical performance of LFP/

graphene composite as cathode in LIBs. For instance, Yang

and colleagues [65] showed that instead of graphene sheets

with micrometer lateral sizes, if the graphene nanosheets

(GNRs) is used as additives, the as-obtained LFP/GNRs

composites showed even better electrical and electro-

chemical properties than LFP/graphene. The reason might

be that the GNRs bridge the LFP particles together forming

more effective conductive networks, and the reduced lat-

eral sizes lower the steric hindrance effect for the Li?

diffusion through the planar structure of graphene. This

indicates additionally that the steric hindrance from the

coating layer on the LFP for ion diffusion should be con-

sidered in further design of the surface modification of

LFP.

Besides the orientation and the lateral size, the edge

structure and thickness of the graphene sheets can also

affect the property of LFP. Uthaisar and Barone [69]

demonstrated theoretically that the armchair and zigzag

edges appeared on the GNRs can affect the adsorption and

diffusion capabilities of the Li atoms. The adsorbed Li

atoms can diffuse toward the edges where the energy

barrier is lower than within the graphene plane, which may

increase significantly the diffusion coefficiency of Li

atoms. The overall results showed that electrodes fabri-

cated with GNRs should increase the power of Li-ion

batteries. Lee and Persson [70] studied the mechanism and

strength of Li absorption in graphene with different

thickness (layer numbers) using so called cluster expansion

method and the density functional theory calculations. It
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was predicted that the number of layer and also the defects

of the graphene may play key roles in their Li storage. This

assumption was proved later by Liu et al. [71].

Although the graphene sheets can improve the electrical

and electrochemical performance of LFP as cathode in

LIBs, however, it is hard to control specifically on the

orientation, the size, and the edge structure in practice.

Therefore, many researches were explored to using the

synergistic effects of graphene and other carbon materials

to increase the performances of LFP cathode materials [63,

72–74]. For example, Hu et al. [17] reported that the spe-

cific capacity of carbon-coated LFP modified with 2 wt%

of the electrochemically exfoliated graphene layers is able

to reach 208 mAh g-1. Through testing the coin cells with

the cathodes made by 0 and 1.8 wt% graphene flakes on

silica particles, they disclosed that the excess capacity is

attributed to the reversible reduction–oxidation reaction

between the lithium ions of the electrolyte and the exfoli-

ated graphene flakes, where the graphene flakes exhibit a

capacity higher than 2,000 mAh g-1. The highly conduc-

tive graphene flakes wrapping around carbon-coated LFP

also assist the electron migration during the charge/dis-

charge processes, diminishing the irreversible capacity at

the first cycle and leading to *100 % Columbic efficiency

without fading.

6 Summary and Outlook

In summary, we have reviewed the recent progresses in the

studies on the composites of LFP/graphene. As one of the

most promising cathode materials for LIBs, LFP has been

exploited overwhelmingly; however, the poor electrical

conductivity limited deadly the application of bare LFP in

the LIB cathode. Graphene, a novel 2D material, has

unique morphology and incomparable electrical conduc-

tivity and other attractive properties. It has been illustrated

that the graphene sheets could be coated on the LFP surface

through several controllable manners, including the simple

physical mixing, in situ growth of the graphene onto LFP,

and, alternatively, the in situ growth of the LFP onto

graphene sheets. After the formation of the composites of

LFP/graphene, the electrical and electrochemical perfor-

mances of the LFP can be improved significantly. The

structural characters of graphene sheets that may affect the

properties of the composites have also been elucidated. The

composites were found applicable as cathode for LIBs.

However, for the practical application of LFP/graphene

composite, several fundamental issues remain to be solved

and some possible solutions are as follow: first, the graphene

sheets used so far for preparation of LFP/graphene com-

posites were generated usually through the chemical reduc-

tion of the GO in which there are various oxygen containing

groups, thus, the effects of the surface functionality of the

graphene sheets on the interaction between the graphene

sheets and LFP and the influences on the properties needs to

be studied. Second, a reasonable theoretical model should be

developed to describe the electron and Li-ion transportation

through the LFP/graphene, the structure and morphology

changes of LFP/graphene during the charge/discharge

should be studied systemically, that will help to understand

the mechanism of the storage mechanism of the Li-ions or

atoms, which may also help for further rationally designing

and preparing the composites with desired properties for
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practical application. Third, the scalable preparation proce-

dures of the composites with homogeneous composition and

controlled morphology need to be developed, and liquid

process is recommended.
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