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Abstract In this paper, for the first time, we report the synthesis of nanoscale cuprous chloride (CuCl) cubic structure by

a facile hydrothermal route. A possible mechanism for the growth of those nanostructures is proposed based on the

experimental results. It is discovered that the existence of HCl could affect the surface of CuCl nanocubes. This unique

cube-like nanostructure with rough surface significantly enhances the electroactive surface areas of CuCl, leading to a high

special capacitance of 376 mF cm-2 at the current density of 1.0 mA cm-2. There is still a good reversibility with cycling

efficiency of 88.8 % after 2,000 cycles, demonstrating its excellent long-term cycling stability and might be the promising

candidates as the excellent electrode material.
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1 Introduction

The increasing demand for energy in the 21st century has

triggered tremendous research efforts for energy storage

and conversion from clean and renewable energy sources

[1–7]. The supercapacitors represent an emerging class of

energy storage devices that have attracted increasing

attention because of a number of unique features including

high power density, operating safety, environment benig-

nity, fast charging/discharging rate, and long-term cycle

stability [8, 9]. On the basis of the energy storage mecha-

nism, the supercapacitors are classified into two types:

electric double layer capacitors (EDLC) and pseudoca-

pacitors. For EDLC, carbon materials (activated carbon,

carbon nanotube, and graphene) are used as the electrode

material. The charge storage is done by ion adsorption/

desorption at the electrode/electrolyte interface [10–16]. In

the case of pseudocapacitors, transition metal oxides and

conducting polymers are used as the electrode material.

The electrochromic behavior of transition metal oxides can

store charges for long period without appreciable leakage

[17], which makes them suitable for pseudocapacitor

applications.

In the last decade, supercapacitor technology has

undergone an increasing development owing to the dis-

covery of new electrode materials, especially metal oxide

nanomaterials, and the design of new hierarchical nano-

structures [18–23]. For example, Wu et al. synthesized

hierarchical SnO2 nanostructures assembled by many

ultrathin nanosheets. They thought that their excellent

supercapacitor performances could be ascribed to their

unique morphology and the fast ion and electron transfer

characteristics [24]. Gu et al. prepared WO3 nanowires and

investigated their electrochemical performances [25].

Mai’s group reported ultra-long hierarchical vanadium

oxide nanowires by electrospinning, which exhibit much

higher capacity in lithium ion batteries [26]. However,

most studies are currently focused on metal oxide and

graphene composite materials.
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CuCl is an I-VII semiconductor with a direct band gap

of *3.4 eV. It has a large exciton binding energy

(*190 meV), which suggests the possibility of the fabri-

cation of exciton-based blue/UV optoelectronic devices

[27]. CuCl is widely used as a catalyst in organic synthetic

industry. In this paper, for the first time, we prepared CuCl

nanocubes by a facile hydrothermal route. The prepared

CuCl products were used for the fabrication of the sup-

ercapacitor, and the results demonstrating the prepared

nanomaterials represent the outstanding rate capability and

high reversibility with little capacitance loss.

2 Experimental

All the chemicals were of analytic grade and used as

received without further purification. In a typical proce-

dure, Cu substrate was cut into 1 9 1 cm2 pieces and

immersed into acetone solution, ultrasonically cleaned for

30 min, and rinsed with deionized water. 5.5 mmol CuCl2
powder was dissolved into 20 mL deionized water with

constant stirring. Another 20 mL deionized water was

added into 8 ml concentrated HCl (its density is

1.18 g cm-3) in a 50 mL glass beaker. The mixed solution

was then put into a 100 ml sealed Teflon-lined autoclave,

followed by hydrothermal reaction at 140 �C for 12 h.

Afterward, the autoclave was naturally cooled to room

temperature. The substrate was taken out, rinsed with

copious deionized water, and dried at 100 �C for 12 h in

air.

The detailed morphologies of the samples were char-

acterized by scanning electron microscope (SEM, Hitachi-

4800). The chemical and elemental compositions of the

prepared products were verified by energy dispersive

spectroscopy (EDS), attached with SEM. The crystallinity

of the prepared nanocubes was examined by X-ray dif-

fractometer (XRD, Rigaku Dmax-2600/pc, Cu K radiation,

k = 0.1542 nm, 40 kV, 150 mA).

Electrochemical characteristics of the as-obtained pro-

ducts were studied on an CHI660 electrochemical work

station (Chenhua, Shanghai) using cyclic voltammetry

(CV) and electrochemical impedance test by configuring

the samples into a three-electrode cell, where the substrate

was used as the working electrode, Pt foil as the counter

electrode, and an Ag/AgCl electrode as the reference

electrode. The electrolyte used was 1 M Na2SO4 aqueous

solution at room temperature. The electrochemical prop-

erties and capacitive behavior of the supercapacitor elec-

trodes were evaluated by CV and galvanostatic discharge.

The specific capacitance, C (mF cm-2), of the electrode

material was calculated from the galvanostatic discharge

according to the following equation:

C ¼ I � Dt= DV � Sð Þ

where I is the discharge current (A), Dt is the discharge

time (s), DV is the voltage change (V) excluding IR drop in

the discharge process, and S is the geometrical area of the

electrode. The electrochemical impedance spectroscopy

(EIS) measurements were performed by applying an AC

voltage with 5 mV amplitude in a frequency range from

0.01 Hz to 100 kHz.

3 Results and Discussion

The general morphologies of the prepared CuCl products

were investigated by SEM, and the results are demon-

strated in Fig. 1a, b. As confirmed by the SEM observa-

tions, the prepared products possess well-defined and

uniform cubic shapes. High magnification SEM image of

individual CuCl nanocubes shows a rough surface. Fig-

ure 1c shows the typical XRD pattern of the as-prepared

CuCl nanocubes. All the sharp peaks are in accordance

with those of CuCl powder (JCPDS no. 06-0344). No peaks

of other phases were detected, indicating the high purity of

the as-synthesized product. Figure 1d shows an EDX

spectrum. From this analysis, it was concluded that the

cubes consist of about 80 % copper and 20 % chlorine.

To further investigate the growth mechanism, controlled

experiments were conducted by varying the reaction time.

Figure 2a, b, c, d, e and f show time-dependent SEM

images. For the prepared CuCl nanocubes, a possible

growth mechanism can be proposed, as shown in Fig. 3.

The following chemical reactions might occur [28]:

Cu2þ þ 2Cl� þ Cu ¼ 2CuCl # ð1Þ

CuCl þ nCl� þ mH2O

¼ CuCln H2Oð Þm

� �1�n
n ¼ 0�4;m ¼ 0�6ð Þ

ð2Þ

At first, a large number of tiny primary CuCl nano-

crystals were formed due to the reaction (1). Crystal growth

mechanisms of ‘‘self-assembly’’ and ‘‘oriented attachment’’

were suggested to dominate the growth process of CuCl

nanocubes. The oriented attachment mechanism describes

spontaneous self-organization of adjacent particles, and

they share a common crystallographic orientation, followed

by the joining of these particles at a planar interface. The

process is particularly relevant in the nanocrystalline

regime, where bonding between the particles reduces

overall energy by removing surface energy associated with

unsatisfied bonds [29]. In the reaction, Cu was used as the

substrate, which can guide self-assembling growth of CuCl

in aqueous solution without any surfactants and stabilizers.

Then the ‘‘oriented attachment’’ can guide the oriented

growth of the nanoparticles. As shown in Fig. 3, a
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supersaturated solution with plenty of CuCl small crystals

was formed by adding Cu resource. Because of high sur-

face energy and thermodynamics instability, CuCl nano-

particles grown on the surface of Cu substrate must

decrease surface energy. The crystal growth prefers the

orientation which maintains the minimum surface energy.

Therefore, surface energy is substantially reduced when the

neighboring nanocubes are grown. With the crystal growth

continuing, each nanoparticle in the aggregates has its own

orientation and acts as a nucleus for further growth. At the

initial stage (about 140 �C for 10 h) (Fig. 2c, d), the sur-

faces of the nanocubes were smooth. As the growth dura-

tion increases, the smallest amount of CuCl reacts with

H2O and Cl- provided by HCl, and copper(I) chloride

complexes have been carried out according to the reaction

(2), and the surfaces of nanocubes are very rough [29].

To highlight the merits of the obtained unique CuCl

architectures and further explore their potential applica-

tions in the supercapacitors, the electrochemical perfor-

mances of CuCl nanocubes as the integrated electrode were

evaluated in three-electrode configuration with 1 M Na2-

SO4 aqueous solution as the electrolyte. CV curves of the

working electrode collected at various scan rates ranging

from 10 to 500 mV s-1 are shown in Fig. 4a. It shows that

with the increase of the scan rate, the area enclosed by the

CV curves increased, as the redox current increased. A

galvanostatic discharging test was also performed with

different current densities: 1.0, 1.5, 2.0, 3.0, and

5.0 mA cm-2, as shown in Fig. 4b. The linear voltage

versus time profiles and a quick I–V response suggest that

the CuCl nanocubes are good electrode materials in

pseudocapacitors. EIS was applied to investigate the elec-

trical conductivity and ion transfer of the supercapacitor

cells. Figure 4c displays the Nyquist plots of CuCl product.

The EIS data can be fitted by an equivalent circuit as shown

by the inset in Fig. 4c. First, the intercept on the real axis in

the high-frequency range provides the equivalent series

resistance (ESR) (Rs), which includes the inherent resis-

tances of the electroactive material, the bulk resistance of

electrolyte, and the contact resistance at the interface

between the electrolyte and electrode. Its range also cor-

responds to the charge-transfer resistance caused by the

Faradic reaction, which was correlated with the intercala-

tion and deintercalation of ion. The charge transfer resis-

tance (Rct), which results from diffusion of electrons, can

be calculated from the diameter of the semicircle in the

high-frequency range. The Warburg resistance (Rw), which

describes the diffusion of redox species in the electrolyte,

can be reflected from the slope of the EIS curve in the low-

frequency range [30]. Its range corresponds to the diffu-

sion-limited mechanism, which confirms the main pseud-

ocapacitive behavior. Qc represents the constant phase

element accounting for a double-layer capacitance [31].

The intercept of the Nyquist curve on the real axis (Rs)
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Fig. 1 a, b SEM images of the

as-synthesized CuCl nanocubes

at different magnifications.

c Typical XRD pattern of the as-

synthesized CuCl products.

d EDS spectra of the as-

synthesized CuCl products
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manifests the good conductivity and the very low internal

resistance of CuCl electrode, and consistent interfacial

contact between CuCl and the Cu substrates. The enhanced

electrochemical performance could be ascribed to the fol-

lowing structural features. First, separate cube-like struc-

ture leads to large open spaces to facilitate the electrolyte

penetration and shorten the diffusion paths for both elec-

trons and ions, resulting in reduced internal resistance.

Second, Cu substrate can provide fast electronic transfer

channels to improve the electrochemical performance.

Moreover, Cl- from electrolyte can successively induce

CuCl and then form combination of CuCl–Cl together with

the occurrence of electrons migration through the bond to

access the underlying copper substrate [29]. The calculated

capacitances as a function of discharge current densities are

plotted in Fig. 4d. Impressively, CuCl electrode delivers

special capacitance of 376, 276, 99, 72, and 27.6 mF cm-2
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Fig. 2 a–f Growth control of

the product morphology. SEM

images of the products at

different times and different

magnifications. a 6 h, b 8 h,

c 10 h, d high magnification

SEM image at 10 h, e 12 h,

f high magnification SEM

image at 12 h
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Fig. 3 A growth schematic for the as-synthesized CuCl

nanostructures
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at current densities of 1.0, 1.5, 2.0, 3.0, and 5.0 mA cm-2,

respectively. The enhanced electrochemical performance

could be attributed to the following structural features.

First, CuCl can absorb electrolyte anions (Cl?) on the

electrode surface from electrolyte: (CuCl) surface ?

Cl- ? e- /? (CuCl–Cl-) surface [27], providing more

charge storage. Therefore, Cl- from the electrolyte is fully

utilized in CuCl electrode. Figure 5a, b, c demonstrates the

cycling performance of the device up to 2,000 cycles at the

current density of 1.0 mA cm-2. An areal capacitance of

376 mF cm-2 and a good reversibility with cycling effi-

ciency of 88.8 % after 2,000 cycles are shown in Fig. 5b.

Almost no obvious specific capacitance loss was observed,

indicating its excellent long-term cycling stability. As seen

in Fig. 5c, when the current density increases to

5 mA cm-2, the specific capacitance is 27.6 mF cm-2,
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maintaining 10 % of that at the current density of

1 mA cm-2.

4 Conclusion

In summary, a mild hydrothermal method was used to

fabricate CuCl nanocubes. The as-prepared product pos-

sesses a specific capacitance of 376 mF cm-2 at the current

density of 1 mA cm-2 and a good reversibility with

cycling efficiency of 88.8 % after 2,000 cycles. The syn-

thesized CuCl nanocubes may have potential applications

in energy storage and other electrochemical devices.
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