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Nanohollow Carbon for Rechargeable Batteries: 
Ongoing Progresses and Challenges
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HIGHLIGHTS

• The synthesis strategies of nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers are summarized.

• Nanohollow carbon materials used as electrode materials in several types of rechargeable batteries are reviewed.

• The challenges being faced and perspectives of nanohollow carbon materials are discussed.

ABSTRACT Among the various morphologies of carbon-based materials, hollow 
carbon nanostructures are of particular interest for energy storage. They have been 
widely investigated as electrode materials in different types of rechargeable batter-
ies, owing to their high surface areas in association with the high surface-to-volume 
ratios, controllable pores and pore size distribution, high electrical conductivity, 
and excellent chemical and mechanical stability, which are beneficial for provid-
ing active sites, accelerating electrons/ions transfer, interacting with electrolytes, 
and giving rise to high specific capacity, rate capability, cycling ability, and overall 
electrochemical performance. In this overview, we look into the ongoing progresses 
that are being made with the nanohollow carbon materials, including nanospheres, 
nanopolyhedrons, and nanofibers, in relation to their applications in the main types 
of rechargeable batteries. The design and synthesis strategies for them and their 
electrochemical performance in rechargeable batteries, including lithium-ion batter-
ies, sodium-ion batteries, potassium-ion batteries, and lithium–sulfur batteries are 
comprehensively reviewed and discussed, together with the challenges being faced and perspectives for them.
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1 Introduction

Carbon-based materials are among both the oldest and new-
est materials, in the entire human civilization of more than 
5000 years, and the recent discoveries being fullerenes, 
carbon nanotubes (CNTs), and more recently graphene [1]. 
There is no doubt that these carbon-based materials are play-
ing an irreplaceable part in our daily life, the ever-rapidly 
advancing technologies in the twenty-first century, and 
future scientific advances. In the past two decades, a series 
of carbon nanostructures have been developed, such as car-
bon dots, nanoparticles, nanorods, nanotubes, nanofibers, 
nanosheets, various core–shells, and nanohollow structures 
[2–9]. Among them, carbon hollow nanostructures of differ-
ent morphologies represent a large group of carbon-based 
materials that have been tuned for high specific surface area 
in association with the high surface-to-volume ratios, con-
trollable pores and pore size distribution, high electrical 
conductivity, variable crystallinities, and excellent chemical 
and mechanical stability [3, 5, 10–12]. By definition, these 
“nanohollows” refer to the various carbon nanostructures 
with an appropriate void nanospace distribution inside a dis-
tinct nanoshell, either relatively dense or porous, and their 
dimensions are in the nanometer scales. In morphology, they 
can be of nanospheres, nanopolyhedrons, and nanofibers.

Since the 1990s, carbon-based materials have been 
widely employed as electrode materials in various energy 
storage and conversion devices, especially different types 
of rechargeable batteries, where graphite is the most widely 
used anode material for almost all commercial lithium-ion 
batteries until now [13]. Notably, these rechargeable bat-
teries store charges by the Faraday reaction process and 
the corresponding electrochemical kinetics are relatively 
slow [14–16]. For example, carbon materials in any bulk 
form offer a limited population of active sites and require 
long ion diffusion pathways, leading to badly compromised 
reaction kinetics and poor performance. In view of this, 
carbon-based materials have been largely developed with 
unique nanostructures to improve the overall electrochemical 
performance, safety, and durability [17–22]. The develop-
ment of nanohollow carbon materials (NHCMs) is an effec-
tive approach to address some of the bottleneck problems 
for batteries and other energy storage devices, where their 
advantages can be listed as follows: Firstly, NHCMs exhibit 
high surface-to-volume ratios and thus more active sites for 

charge storages, which would also be beneficial to the short-
ened electrons transfer/ions diffusion, improved interfacial 
contact with electrolyte and wettability, resulting in high 
specific capacity and excellent rate performance. Secondly, 
NHCMs possess favorable structural and mechanical stabil-
ity, which can effectively suppress the volume expansion 
in the repeated long-term cycles of rechargeable batteries, 
leading to outstanding cycle stability. Thirdly, their mor-
phologies and surface chemistry can be flexibly designed 
and regulated for different applications. With these appeal-
ing advantages, NHCMs have been widely explored as elec-
trode materials in different types of batteries in recent years, 
which are evidenced by the yearly rising number of scientific 
publications on nanohollow carbon materials for batteries 
(Fig. 1).

To design and fabricate NHCMs with different morphol-
ogies, various templating and non-templating techniques 
have been exploited in the past two decades, including 
silica, polystyrene, calcium carbonate, surfactants, and 
copolymers for generating emulsion droplets, micelles, 
vesicles, etc. [2]. Among the various templating tech-
niques, there are both soft and hard templates. For exam-
ple, one of the early examples of hard templates was the 
use of hollow silica and inorganic–polymer hybrid nano-
spheres, reported by Caruso and co-workers in 1998 [23]. 
In parallel, various chemistry approaches have been taken 
to manipulate the intrinsic structure, defects, crystallin-
ity, functional groups, and thus the resultant properties, 
notably by heteroatom (N, B, S, P, etc.) doping of NHCMs, 
which are aimed at improving the storage capacity and 
electrochemical kinetics in rechargeable batteries [24–26]. 
There are several recent reviews on carbon-based materi-
als, such as carbon nanotubes and graphene, for appli-
cations in supercapacitors and batteries [27–31]. More 
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Fig. 1  Number of publications searched by using “hollow carbon 
materials for batteries” on the Web of Science in the past 10 years
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recently, there are also a couple of reviews on carbon 
nanospheres and core–shell nanostructures for energy 
storage devices [32–35]. Nevertheless, there is a limited 
specific discussion in addressing NHCMs, especially with 
respect to their applications in rechargeable batteries, 
although there have been a rising number of studies, as 
mentioned above.

Herein, we will look into the ongoing progresses on 
the recent development of several key types of NHCMs, 
including hollow carbon nanospheres, nanopolyhedrons, 
and nanofibers, and their performances and applications 
in rechargeable batteries (Fig. 2). Firstly, the design and 
synthesis strategies of NHCMs through the hard templates, 
soft templates, and template-free approaches are carefully 
examined. Given the apparent advantages in structure and 
electrochemical performance of NHCMs, they have been 
widely employed as electrode materials for different types 
of rechargeable batteries, such as lithium-ion batteries 
(LIBs), sodium-ion batteries (SIBs), potassium-ion batter-
ies (PIBs), and lithium–sulfur batteries (LSBs). There are 
also the challenges and future perspectives for NHCMs, 
in particular in connection with the rise of new generation 
energy storage devices in the coming few years.

2  Controlled Formation of Nanohollow 
Carbon

Over the past two decades, nanohollow carbon materials 
(NHCMs) have been considered as an important class of car-
bon-based materials, and their preparation and performance 
in energy storage have become a research hot spot. More 
important than anything else is the controlled formation of 
nanohollow carbon. In this connection, the use of a pre-made 
nanostructural template is one of the most effective strate-
gies toward achieving the designed nanohollow structure. 
Generally, the synthesis strategies for NHCMs can be clas-
sified into three major groups, including the hard templates, 
soft templates, and template-free approach. In parallel, there 
is a wide range of precursors that have been widely explored 
for these strategies. Among them, metal–organic frameworks 
(MOFs) have been studied as both templates and precursors 
more recently. For nanohollow carbon fibers, electrospinning 
has been most commonly used.

2.1  Hard Template Methods

Hard templates are among the early approaches to prepare 
NHCMs, mainly for nanohollow carbon spheres, where the 
processes generally involve four steps: (1) design of a suit-
able rigid solid template, (2) coating the template with a 
carbon precursor, (3) high-temperature pyrolysis, and (4) 
removing the template. A series of hard templates have been 
utilized so far, including ceramic types such as silica, poly-
mers such as polystyrene, inorganic salts, and even metallic 
particles.

Silica  (SiO2) nanospheres are the most widely used hard 
templates to synthesize NHCMs, owing to their tunable size 
from nanometers to micrometers, negative surface charge, 
relatively low cost, as well as good stability. They can be 
subsequently removed by etching using HF or hot NaOH 
solution, where the hollow nanostructure can be remained. 
For instance, Yu et al. designed hollow mesoporous car-
bon spheres (HMCS) derived from the silica–polydopamine 
(PDA) nanocomposite spheres by using  SiO2 nanosphere 
templates [36]. The synthesis diagram of HMCS is shown 
in Fig. 3a, where the tetraethyl orthosilicate (TEOS) was 
first added to an EtOH/H2O/NH3 mixed solution to form 
 SiO2 particles (2–3 nm). Notably, the suspension of the 
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Fig. 2  Schematic illustrations of various morphologies for nanohol-
low carbon materials used for rechargeable batteries
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mixed solution could undergo secondary nucleation to form 
monodispersed  SiO2 clusters. PDA was then added to the 
reaction system (after the addition of TEOS) for forming 
a  SiO2@SiO2/PDA core–shell structure. The HMCS could 

then be obtained after carbonization and NaOH etching of 
the  SiO2 templates. The as-synthesized NMCS exhibits a 
nanohollow spherical structure and controllable pore con-
figuration, cavity size, and shell thickness. In particular, the 

(a)

(b) (c) (d)

(f) (i) (j)

(g) (h) (k) (l)

(e)

O −O
O−

O−

O− O O− O O

O

NH3

NH3

HO
HO

HO

NH3

N

+ +

O

O
O

O
O

Si
Si

Si
Si

O

O

O
Si

la

II

III

In-situ Stöber templating

IVa

IVblb

EtOH/H2O/NH3

SiO2 primary particle

SiO2 core particle SiO2@SiO2 + PDA HMCS

Polydopamine (PDA)

=

=

100 nm500 nm

200 nm
100 nm2 µm

5 nm

OC2H5

OC2H5

H2N NH2

HO OH

H H

O

Etching

Carbonization

OH

OH OH
OH

OH

Si

Si

Si

Si

Si

Si

Si
SiSi O

O

O

O

O

O

O

O
O

O

O

O

O O

OH
OH

OH

HO

HO

HO

HO HO

OHOH

OH

OH

OH

OH

O

O

N

HO HO

HO

HN

OC2H5

NH3·H2O

C2H5O
Si

Fig. 3  a Schematic illustration of the synthesis process of HMCS by using  SiO2 as hard templates, b–e TEM images of the cavity and shell 
thickness of the as-fabricated HMCS, scale bars: 100 nm. Reproduced with permission from Ref. [36]. Copyright 2016, Royal Society of Chem-
istry. f Schematic illustration of the synthesis process of NC, g SEM, and h TEM images of NC. Reproduced with permission from Ref. [40]. 
Copyright 2017, Elsevier. i, j SEM and k, l TEM images of the carbon colloidosome shells. Reproduced with permission from Ref. [41]. Copy-
right 2016, Wiley–VCH
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shell thickness of NMCS can be controlled in the range of 
15 to 55 nm, and the cavity diameters are in 285–162 nm, 
respectively (Fig. 3b–e). Noted that there are several carbon 
source options to achieve the nanohollow carbon spheres, 
including glucose [37], polypyrrole [38], ionic liquids [39], 
and so on. These carbon precursors lead to a stable nanohol-
low structure, when  SiO2 is used as a template.

It should be pointed out that the resorcinol–formalde-
hyde (RF) has been commonly used as a fascinating and 
versatile carbon precursor. For example, Zhao et al. utilized 
the RF as the carbon precursor and ethylenediamine (EDA) 
by a sol–gel method to prepare the N-doped carbon hol-
low microspheres (NC) (Fig. 3f) [40]. The as-fabricated 
NC displayed a rather uniform size of ~ 120 nm with good 
mechanical strength (Fig. 3g). TEM studies revealed that the 
NC thus made exhibited hollow nanostructure with a thick-
ness of ~ 10 nm (shell) and a diameter of ~ 100 nm (core) 
(Fig. 3h). Hyeon and co-workers developed nanohollow 
carbon capsules using phenol resin as the carbon sources 
and mesoporous  SiO2 as the templates [42]. Fuertes et al. 
produced the  SiO2@RF spheres with a core@shell struc-
ture [43], where the derived hollow carbon nanostructure 
is 150–500 nm in diameter. Zheng et al. applied a sol–gel 
process to synthesize the hollow carbon spheres with a high 
specific surface area of 1286 m2  g−1 [44]. Yu et al. reported 
a new surfactant-free sequential heterogeneous nucleation 
pathway using the monodispersed  SiO2@RF@SiO2@RF 
composite to prepare mesostructured nanohollow carbon 
particles [45].

In addition to the sol–gel processes,  SiO2 templates have 
been employed in other processes as the hard templates, 
such as chemical self-assembly, chemical vapor deposition 
(CVD), hydrothermal, and solvothermal approaches. For 
example, Lou et al. developed a chemically assisted strategy 
to obtain hollow carbon colloidosomes on various types of 
functional particles [41]. Their particle sizes can be tuned by 
size selection of the  SiO2 nanosphere templates. As shown 
in Fig. 3i–l, the as-fabricated hollow carbon colloidosomes 
exhibit a cavity size of ~ 400 nm. CVD is an efficient and 
controllable process to prepare carbon-based materials. 
Zhao et al. prepared hollow carbon spheres (HCSs) by a 
CVD method using benzene as the carbon precursor and 
 SiO2 spheres as the templates [46]. The HCSs can be con-
trolled in either smooth single shells, or deformed single 
shells, or double shells, and N-doped shells. Chen and co-
works also investigated the preparation of hollow carbon 

materials using the  SiO2 template by CVD method [47, 48]. 
Titirici et al. proposed a hydrothermal carbonization process 
to achieve hierarchical hollow carbon materials [49], where 
some functional groups could be anchored on their surfaces 
under the hydrothermal conditions.

Many other hard templates have been utilized to synthe-
size nanohollow carbon materials. The surface charges of 
polystyrene nanospheres (PS) are negative, which is also a 
class of widely used hard template [50–52]. For instance, 
Lu and colleagues proposed a confined nanospace pyroly-
sis process to produce uniform hollow carbon nanospheres 
(HCSs), by consecutive surface coating on the PS templates 
[53]. Porous N-doped hollow carbon spheres (PNHCSs) 
have been prepared using polyaniline as the carbon sources 
and PS as the templates by Dou et al. [54]. Calcium carbon-
ate  (CaCO3) is also an effective hard template for producing 
NHCMs [55–57]. Our groups developed the N-doped hollow 
porous carbon spheres (NPCSs) by using  CaCO3 spheres as 
the templates and polydopamine as the carbon source [58]. 
Notably, the  CaCO3 nanosphere can be used as both a hard 
template and an activator in the high-temperature pyrolysis; 
thus, the as-prepared NPCS exhibits a high specific surface 
area of 1984 m2  g−1. Besides, some metallic particles have 
also been proposed as hard templates, such as the metallic 
Mg [59, 60], Na [61], and Zn [62–64].

2.2  Soft Template Methods

Although hard templates have been widely employed in the 
preparation of NHCMs giving rise to different nanostruc-
tures, certain issues exist for them. For example, the hard 
templates have to be pre-made, which can be a tedious pro-
cess and add on the overall cost. The processes using hard 
templates are typically multi-steps and time-consuming, 
due to the preparation of precursor materials and their coat-
ings, high-temperature carbonization, and the subsequent 
templates removal by dissolving them in strong acids or 
alkaline conditions, which are not environmentally friendly. 
In this regard, soft template methods are more attractive, 
because the applied templates can either be converted into 
carbon or be removed in the same carbonization process. 
Some commonly used soft templates include copolymers 
and surfactants, which generate the required emulsion drop-
lets, micelles and vesicles, and gas bubbles.
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Although various soft templates have been studied and 
several successful examples have been documented, in gen-
eral, the successful synthesis of mesoporous or hollow car-
bon remains a challenge, especially at large scale, due to 
the relatively weak self-assembly ability of certain precur-
sor components and the likely cross-linking of neighboring 
building blocks. For example, Qiao et al. used the cationic 
fluorocarbon surfactant FC4   (C 3F 7 O(C FCF 3 CF 2O )2 CF CF 
3C ONH (CH 2 )3 N +( C2 H5)2CH3I−1) and triblock copolymer 
Pluronic F127,  EO106PO70EO106 (EO, ethylene oxide; PO, 
propylene oxide) as the soft templates, together with RF as 

the carbon precursors to prepare mesoporous carbon nano-
spheres (MCNs) (as shown in Fig. 4a) [65]. By adjusting 
the key reaction parameters, multi-layered mesoporous RF 
hollow nanospheres can be synthesized, which can be con-
verted into different hollow MCNs (Fig. 4b–e). Notably, the 
co-templating of FC4 and Pluronic F127 and the cross-link-
ing properties of the RF precursors, which showed a large 
degree of shrinkage during the high-temperature pyrolysis 
process, lead to the formation of hollow or mesoporous car-
bon nanostructures. Lou et al. proposed the mixed liquids 
of 1,3,5-trimethylbenzene (TMB) and water with emulsion 
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droplets as the soft template [66]. The bowl-like hollow PDA 
particles were synthesized through an emulsion-induced 
interface anisotropic self-assembly by using the purposely 
designed TMB soft template and PDA polymer (Fig. 4f). 
As shown in Fig. 4g–i, the as-derived hollow mesoporous 
carbon remained a bowl-shaped hollow morphology, with a 
specific surface area of 619 m2  g−1.

Yang et al. also proposed the use of water droplets in nan-
oparticle-stabilized emulsions (Pickering emulsions) as the 
soft templates [67]. The interior-structured mesoporous car-
bon microspheres (MCMs) could be successfully obtained 
by the surfactant assembly within the pickering emulsion 
droplets templates, and the phenolic resole oligomers were 
used as the carbon precursors. In particular, the phenolic 
resole oligomers were co-assembled with Pluronic F127 
molecules via hydrogen bonding interactions, and the forma-
tion of the nanomicelle-type composite induced a new oil/
water interface, leading to a mesoporous structure at around 
the inner surface of the water droplet (Fig. 4j). The interior 
structures of MCMs thus derived (such as hollow, multi-
chambered, bijel-structured multi-cored “solid,” and honey-
combed) could be regulated by tailoring the concentration of 
nanomicelles with water droplets (Fig. 4k). Similarly, Ji et al. 
produced N-doped hollow nanospheres (N-NHCM) through 
the carbonization of hollow ZIF-8 nanospheres, which were 
prepared by an emulsion-based interfacial reaction [69]. In 
addition, Yao and co-workers presented an approach of using 
o-phenylenediamine (oPD) oligomers as the soft templates, 
by hydrogen bonding to form polymer microspheres [70], 
which could be transformed into nitrogen and oxygen co-
doped hollow carbon spheres (HCSs) upon high-temperature 
pyrolysis process. Subsequently, Ye et al. applied an O/W/O 
inverse-emulsion system as the soft template and RF as the 
carbon precursor to develop hollow carbon particles [71].

While the soft templates can lead to mesoporous hollow 
materials, a precision regulation in the pore configuration 
and feature remains a challenge in several studied systems. 
In this regard, Lou et al. proposed a novel dual-soft-tem-
plate approach to prepare walnut-shaped macro/mesoporous 
PDA particles with bicontinuous channels ranging from 20 
to 95 nm [68]. A mixture of two similar block copolymers 
(P123 and F127) was employed as the dual soft templates in 
their research. Note that the mass ratio of P123 to F127 has 
a great impact on the mesophase transition for the forma-
tion of mesostructured PDA particles (Fig. 4l). As shown 
in Fig. 4m, n, the walnut-shaped PDA particles could be 

carbonized into hollow mesoporous carbon particles with 
morphology and pore structure largely unchanged. Besides, 
some common surfactants could also be used as the soft 
templates to prepare nanohollow carbon materials [72]. For 
instance, Li and Zhang et al. utilized the anionic surfactant 
sodium dodecyl sulfate (SDS) as the soft template to syn-
thesize hollow carbonaceous capsules and hollow carbon 
nanospheres, respectively [73, 74]. Tashima and co-workers 
proposed the cetyltrimethylammonium bromide (CTAB) as 
the soft template and 1,3,5-trimethylbenzene (TMB) and 
tertbutanol (t-BuOH) as the co-surfactants to prepare nano-
hollow carbon materials [75, 76].

2.3  Template‑Free Methods

Although both the hard template and soft template methods 
have been widely employed in the synthesis of nanohollow 
carbon materials up to now, the hard template strategies 
are typically multi-steps and time-consuming owing to the 
need for preparation and subsequent removal of precursor 
template materials. It is also difficult to accurately tune the 
hollow morphologies and components of NHCMs by using 
the soft template strategies. To this end, the template-free 
approach is a facile and low cost for synthesizing NHCMs.

In this connection, certain hollow polymers/precursors 
can be prepared by self-polymerization or self-assem-
bling, and then, a high-temperature pyrolysis is carried 
out to overt them into NHCMs. For example, Wu and co-
workers synthesized the amphiphilic homopolymer (PAA) 
through a polymerization process without any templates, 
which could be self-assembled into rather uniform vesi-
cles by directly adding water to the PAA solution without 
any purification (Fig. 5a) [77]. As shown in Fig. 5b, c, the 
diameter of the as-assembled PPA vesicles was ~ 200 nm. 
By the electron transmittance chart and electron transmit-
tance simulation, the membrane thickness of PAA vesicles 
was ~ 5 nm (Fig. 5d, e). Nitrogen-doped hollow carbon 
spheres (N-HCSs) can then be prepared by the carboniza-
tion of the PAA vesicles cross-linked by melamine. Authors 
group also developed a controllable solvothermal route to 
design the N-doped hollow carbon microspheres (NHCMs), 
which were formed by the self-assembly of hierarchical 
polyimide nanosheets by controlling of a suitable polym-
erization time and solvent without any additional catalyst 
and template [78]. The as-fabricated NHCM displayed a 
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hierarchical porous structure with a high specific area of 
1005 m2  g−1. Notably, the template-free method for fabricat-
ing NHCM is environment friendly and does not require the 
tedious processes of adding and removing any templates. 
For example, Wu and Niwase et al. prepared hollow carbon 
materials through heat treatment of the resole modified with 
poly(ethylene glycol) monomethyl ether (resole-PEG), with 
C60 fullerene powder as the polymeric carbon precursor 
[79, 80]. Hui et al. utilized the solid melamine–formalde-
hyde resin spheres to develop nitrogen- and oxygen-co-
doped hollow carbon spheres (HCSs) by high-temperature 
pyrolysis [81].

Self-assembly provides a promising pathway for the syn-
thesis of carbon-based materials with nanohollow structures. 

Long et al. reported hollow polyacrylonitrile (PAN) spheres 
by a gas-foaming-assisted phase-inversion process, where 
the liquid–liquid phase-inversion process and a self-assem-
bly process were coupled (Fig. 5f) [82]. As shown in Fig. 5g, 
the PAN spheres thus made showed robust and hollow archi-
tectures, and their sizes could be tailored by changing the 
needle sizes and the temperatures of the water bath. The 
mechanical properties of the hollow composite-type spheres 
could be enhanced through adding CNTs in the precursor 
solution (Fig. 5h). Hollow carbon spheres (HCSs) were then 
obtained by the carbonization of the oxidized PAN spheres 
by a high-temperature treatment. Similarly, spray pyrolysis 
has been considered as an effective to prepare nanohollow 
carbon materials [84, 85]. For instance, S. Suslick et al. 
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proposed an ultrasonic spray pyrolysis to synthesize porous 
carbon materials with alkali propiolates (HC ≡ CCO2M, 
M = Li, Na, and K) as the carbon precursors [83]. As shown 
in Fig. 5i–k, different structures and morphologies of hol-
low carbon materials can be formed by mixing the alkali 
propiolates with different mole ratios. A one-step aerosol 
process to synthesize hollow carbon nanocapsules has been 
reported by Lu and co-workers, who employed an enzymati-
cally polymerized poly(4-ethylphenol) as the carbon pre-
cursor [86]. NHCMs can be also formed through a proper 
plasma process. For example, Kim and Charlier et al. pro-
posed an electric plasma discharge and thermal plasma pro-
cess to prepare hollow carbon materials [87, 88]. García 
and co-workers presented a study on the chlorination of 
bis(benzene)chromium (Cr(C6H6)2) to achieve the hollow 
and solid carbon spheres at two reaction temperatures [89]. 
The as-fabricated hollow carbon spheres exhibited a high 
surface area of 1761 m2  g−1.

2.4  MOFs‑Derived Hollow Carbon Nanopolyhedrons

Metal–organic frameworks (MOFs) are crystalline coordina-
tion compounds composed of metal ions (or metal clusters) 
and organic ligands, which have attracted much attention 
both scientifically and technologically [90]. Due to their tun-
able chemical compositions, morphologies, level of porosity, 
international pore configuration, and surface functionalities 
that can be regulated by the combinations of organic and 
metal/inorganic constituents, they have been widely applied 
in adsorption, gas storage, catalysis, drug delivery, energy 
storage, and conversion [91]. In addition, MOFs have been 
demonstrated as excellent precursors to prepare various 
porous materials, including those carbon-based, as reported 
by Xu and co-workers in 2008 [92]. A subsequent report 
on MOFs-derived porous carbon was made by Yamauchi 
et al. in 2012 [93]. Since then, MOFs-derived carbons have 
emerged as a large class of porous materials studied for 
various applications [3, 94, 95]. Nevertheless, the common 
challenges for these MOFs-derived carbon materials are 
related to the carbonization process, such as the undesired 
pore structure formed, aggregation of metal/nonmetal parti-
cles, and poor control in structural evolution [20]. To address 
some of these issues MOFs themselves can act certain tem-
plating roles, in addition to being the precursors. Therefore, 
considerable efforts have been made in the tuning of various 

processing conditions to form the designed MOFs in the first 
place, and then the condition to convert them into the desired 
hollow/porous carbon-based structures. Similarly, there has 
been considerable progress made with both the hard and soft 
templating of MOFs and MOF-derived carbon-based materi-
als. In this connection, some of the governing principles that 
have been discussed above on the hard and soft templating 
approaches would be applicable to them.

As a main elemental component in MOFs is carbon, 
carbon-based materials can be derived by carbonization of 
MOFs without adding other precursors. However, due to the 
rather complicated steps involved in the actual conversion 
process, there is need to control the processing conditions 
applied to the carbonization process, such as temperature, 
atmosphere/medium, and even time. In the process, there are 
steady changes in the chemical composition, types of phases, 
both internal pore structure and surface conditions, as well 
as morphology. A few MOFs can be converted into hollow 
carbon structure, by carefully choosing the MOF types and 
experimental conditions. To tailor the desired hollow carbon 
structure, certain templating approach is shown to be use-
ful. For example, in a stress-induced orientation contrac-
tion approach, Ye and co-workers used ZIF-8 nanotubes as 
the precursor and then coated them with a thick and thin 
mesoporous silica layer  (mSiO2), respectively. Mesoporous 
hollow carbon nanotubes (HMCNCs) and solid mesoporous 
carbon nanotubes (SMCNCs) without hollow cavity could 
then be obtained after pyrolysis and acid treatment (Fig. 6a, 
b) [96]. The ZIF-8 nanotubes would have contracted strongly 
during the high-temperature pyrolysis process, and the car-
bonization occurred preferentially at the interface between 
ZIF-8 and  mSiO2 coating, where the thick  mSiO2 layer was 
rigid enough to counteract the inward contraction, but not 
the thin  mSiO2 layer, so the respective HMCNCs and SMC-
NCs were formed by the different  mSiO2 thicknesses. The 
SEM and TEM images of the HMCNCs (the thickness of 
 mSiO2 was about 40 nm, Fig. 6c–e) and SMCNCs (the thick-
ness of  mSiO2 was about 8 nm, Fig. 6f–h) further explain 
that the rigid-interface-induced outward contraction by 
the  mSiO2 layer thickness was effective to regulate ZIF-8 
derived carbon structure. Besides, the mesoporous silica 
 (mSiO2) had been coated on the Co-based MOFs (ZIF-67) 
to synthesize 3D hollow carbon materials, together with car-
bon nanotubes on their surface by the Co catalysis during the 
pyrolysis process [97]. Similarly, carbon nanotube-decorated 
N-doped hollow carbon can be prepared through pyrolysis 
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of  SiO2 and bimetallic ZIFs-CoxZn1−x based on a mixed ions 
strategy [98]. Hollow N-doped carbon can be also achieved 
using ZIF-8 as the cores and polydopamine (PDA) as the 
shells via heat treatment by the stresses-induced orientation 
contraction [99].

The synthesis of MOFs-derived hollow carbon nano-
polyhedrons has been successfully demonstrated through 
 SiO2 coating, carbonization, and etching process, whereas 
this procedure requires a uniform coating around the high-
curvature surface and post-treatment to remove the tem-
plate, which is rather complicated and time-consuming. 
Yamauchi and co-workers had proposed that ZIF-8 could be 
used to fabricate hollow carbonaceous composites through a 

hydrothermal reaction with glucose (Fig. 6i), where the acid 
generated from the hydrolysis of glucose led to the decompo-
sition of ZIF-8 [100]. As shown in Fig. 6j, k, ZIF-8-derived 
hollow carbonaceous composites can be transformed into 
hollow carbon and ZnO/C nanocomposites after pyrolysis 
at 900 and 500 °C, respectively. They have also developed a 
spatially controlled tannic acid solution etching strategy to 
prepare monocrystalline ZIF nanobubbles (Fig. 6l), which 
can be converted into hollow carbon nanobubbles under an 
optimal pyrolytic condition [101]. Furthermore, Wang et al. 
found that the phytic acid (PA) can slowly etch ZIF-67, form-
ing a hollow nanostructure [102]. More recently, a series of 
MOFs-derived hollow carbon nanopolyhedrons have been 
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reported by using MOFs as the cores (structural templates) 
and various polymers as the shells achieved through high-
temperature pyrolysis [103]. The polymer coating layers, 
such as poly(cyclotriphospazene-co-4,4′-sulfonyldiphenol) 
(PZS) [104, 105], oligo(cyclotriphosphazene-co-hexahy-
droxytriphenylene) (OCHT) [106], and resorcinol–formalde-
hyde polymers [107], have been demonstrated to be feasible.

2.5  Electrospinning of Hollow Carbon Nanofibers

One-dimensional (1D) hollow carbon nanofibers have been 
exploited for energy storage and conversion, owing to their 
large length to diameter ratio and high surface area, which 
can provide charge storage sites and fast pathways for electron 
transport [3]. These 1D hollow carbon nanofibers also show 
robust mechanical flexibility, which can be easily grown on to 
substrate supports to form self-standing flexible electrodes for 
energy storage devices. Up to now, there are several strategies 
to prepare the 1D carbon nanofibers, such as electrospinning, 
template synthesis, chemical vapor deposition, hydrothermal 
growth, and self-assembly. Among them, electrospinning is 
considered as the most facile and highly controllable approach 
to achieve the designed carbon nanofibers with hollow nano-
architectures and freestanding functionality, including those 
uniaxial, co-axial, and triple-co-axial ones.

Due to the high carbon yield and predictable mechanical 
strength of the resultant products, polyacrylonitrile (PAN) has 
been widely employed as the carbon precursor for electrospun 
carbon nanofibers, where co-axial electrospinning is the com-
monly used method for manufacturing 1D hollow carbon 
nanofibers. For example, Shanmugam and co-workers pre-
pared hollow (HCNR)- and arch (ACNR)-shaped carbon nano-
tubes by the co-axial electrospinning (Fig. 7a), where PAN was 
used as the carbon precursor and polyvinyl pyrrolidone (PVP) 
was used as the sacrificial polymer with different flow rates 
[108]. As shown in Fig. 7b–e, the as-fabricated HCNR and 
ACNR nanostructures showed average diameters of 180 and 
155 nm, where the core diameter was about 40–70 nm for the 
HCNR sample. Similarly, N-doped hollow carbon nanofibers 
(HACNFs) have been prepared via the co-axial electrospinning 
using PVP as the core precursor and PAN as the shell precur-
sor, together with  NH3 activation treatment (Fig. 7f) [109]. 
The as-obtained HACNFs exhibited an outer and an inner fiber 
diameter of ~ 300 and ~ 150 nm, as well as a high specific sur-
face area of 655 m2  g−1. Up to now, different internal and 

external polymer precursor components have been developed 
for preparing hollow carbon nanofibers by the co-axial elec-
trospinning, including a mixture of PAN/PVP as the shell and 
PVP as the core precursor [110], poly(styrene-co-acrylonitrile) 
(SAN) as the core and PAN/PVP mixture as the shell precursor 
[111], SAN solution as the core and polyacrylic acid (PAA) as 
the shell precursor [112], poly (methyl methacrylate) (PMMA) 
as the core precursor and PAN/PMMA mixture as the outer 
shell precursor [113], silicone oil as the inner core and PAN as 
the outside layer precursor [114], and so on [115, 116].

1D hollow carbon nanofibers can also be prepared by uni-
axial electrospinning technique, which needs some additional 
materials to assist the synthesis. For instance, the hollow 
particle-based N-doped carbon nanofibers (HPCNFs-N) have 
been prepared by the carbonization of PAN/ZIF-8 compos-
ite nanofibers (Fig. 7g), where the ultrafine ZIF-8 nanopar-
ticles were embedded into electrospun PAN precursor [117]. 
The primary ZIF-8 nanoparticles could be transformed into 
interconnected N-doped carbon hollow nanoparticles by high-
temperature carbonization. As shown in Fig. 7h–k, the as-fab-
ricated HPCNFs-N exhibited good flexibility, which consisted 
of numerous hollow nanoparticles interconnected with each 
other. Owing to such hierarchical porous structure (417.9 m2 
 g−1) and high N-doping level (7.85%), the HPCNFs-N showed 
remarkable specific capacitances and excellent cycle stability, 
when used as electrodes in supercapacitors. Similarly, Wang 
et al. also reported the preparation of N-doped hollow hierar-
chical carbon fibers (NCPFs) via electrospinning and further 
carbonization of the ZIF-8/PAN nanofibers [118]. The hard/
soft templates materials were added to the electrospinning 
polymer solution for achieving the hollow carbon nanofibers. 
For example, Cui and co-workers used  SiO2 as the template 
and pore-forming agent to prepare hollow bamboo-like carbon 
nanofibers [119]. Other hard templates included ZnO [120], 
 SnO2/Fe2O3 [121], and PS microspheres [122]. Several soft 
templates have been also proposed to obtain hollow carbon 
nanofibers [123], together with triple-co-axial electrospinning, 
nozzle-less electrospinning, and other approaches [124–126].

3  Application in Rechargeable Batteries

Lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), 
potassium-ion batteries (PIBs), and lithium–sulfur bat-
teries (LSBs) are among the rechargeable batteries. The 
electrochemical performances of these battery systems 
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are largely determined by the electrode materials, and 
thus, the development of a superior electrode material 
plays an important role in these rechargeable batteries. 
Indeed, nanohollow carbon materials (NHCMs) have been 
widely investigated as the electrode materials; in particu-
lar, those hollow carbon nanospheres exhibit high sur-
face-to-volume ratios, encapsulation capability, together 

with outstanding electrochemical performance when used 
in batteries, especially using as conductive host materials 
offer to inhibit the polysulfide entrapping and buffer the 
volume expansion in lithium–sulfur batteries. However, 
owing to nanohollow carbon spheres having the lower tap 
density and the larger cavity volume than some of hol-
low carbon materials, they give rise to a relatively lower 
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volume energy density in the as-assembled batteries. In 
addition, the structural stability of hollow carbon nano-
spheres needs to be further improved during the repeated 
cycles. MOF-derived carbon nanopolyhedrons possess 
high specific surface areas and tailorable levels of poros-
ity, which would aid to provide a path way for electrons 
to move and shorten the length of transfer channel. Never-
theless, the production yield of MOF-derived carbon nan-
opolyhedrons is low; this is a torturous problem for large-
scale application in batteries. Hollow carbon nanofibers 
afford a high surface-to-volume ratio and a short transport 
pathway for ions, and they also show favorable opportu-
nities in flexible battery devices, owing to their unique 
1D morphology and outstanding flexibility. Even so, the 
reactive sites exposed by nanohollow carbon nanofibers 
are relatively limited, and thus, a combination of multi-
ple activation strategies has often been employed when 
used in batteries. Even so, the reactive sites exposed by 
the nanohollow carbon nanofibers are relatively limited 
in number. Thus, an efficient combination of multiple 
entities would be of value for applications in batteries. 
For example, rechargeable batteries making use of a 
combination of different types of nanohollow carbons as 
the electrode materials can give rise to a high specific 
capacity, rate capability, and cycle stability. Some of the 
application examples are listed in Table 1, where they 
are compared with those with graphite and conventional 
carbon materials.

3.1  Lithium‑Ion Batteries

Lithium-ion batteries (LIBs) have been dominating the 
power market for portable electronics, and now they are 
quickly moving into hybrid vehicles and electric transport 
systems. Graphite anode has been widely used in commer-
cial LIBs, owing to the large specific capacity (372 mAh 
 g−1), mechanical robustness, and long cycle stability. How-
ever, its poor  Li+ diffusion kinetics and thick solid electro-
lyte interphase (SEI) often lead to an inferior rate capabil-
ity. Up to now, there have been a large number of studies 
on using nanohollow carbon as the electrode materials for 
LIBs. For instance, Goodenough and co-works proposed an 
in situ chemical deposition strategy to grow CNT on the 
surface of the N-doped CNFs, where  C2H2 as the carbon 
source and Ni particles as the catalyst, yielding an activated 

N-doped hollow CNT–CNF hybrid materials (Fig. 8a) [127], 
in which Ni nanoparticles were encapsulated in graphitic 
carbon with a thickness of ~ 5 nm (Fig. 8b). They possessed 
pores and hollow carbon nanoparticles, and defects were 
present in the wall of hollow structure (Fig. 8c, d). As shown 
in Fig. 8e, such material gave a reversible capacity of about 
1150 mAh  g−1 at 0.1 A  g−1. At the high current density of 
8 A  g−1, its capacity of ~ 320 mAh  g−1 fades less than 20% 
after 3500 cycles. There are a number of reports on the syn-
thesis of nanohollow carbon materials by template method 
used for LIBs [128–132, 177, 178]. For example, N-doped 
mesoporous carbon hollow spheres (N-MCHSs) were syn-
thesized by using mesoporous silica hollow spheres as the 
template and PDA as carbon precursor, reported by Chu 
et al. [133]. They displayed a sponge-like mesoporous shell 
and showed a high specific surface area of 411.6 m2  g−1. Yu 
et al. reported graphene-wrapped graphitic hollow carbon 
spheres (G-graphitic HCS), which were fabricated by iron-
catalyzed carbonization of double-coated PS spheres tem-
plate [134]. They delivered a high initial discharge capacity 
of 2007 mAh  g−1 at 0.1 A  g−1 and remained 92.4% of initial 
capacity after 100 cycles.

As has been mentioned above, electrospinning is an effec-
tive strategy to prepare hollow carbon fibers, which have 
been applied to LIBs [124, 179, 180]. Chen et al. synthe-
sized a self-healing core fiber with the liquid metal nano-
particles, which were encapsulated with hollow carbon 
(LMNPs@CS) by the co-axial electrospinning and then 
carbonization (Figure 8f) [135]. The LMNPs@CS fiber 
was used as a freestanding anode and showed an impres-
sive rate capability (499 mAh  g−1 at 2  A−1) and excellent 
cycle stability (552 mAh  g−1 after 1500 cycles) (Fig. 8g). 
Yu et al. also proposed a co-axial electrospinning pathway 
to make hollow carbon nanofibers (HCNFs) as anode materi-
als for LIBs, where the styrene-co-acrylonitrile is the core 
and poly(acrylonitrile) is the shell solutions, together with a 
subsequent thermal treatment process [137]. Recently, Lee 
and co-workers presented a method involving urea coat-
ing over the electrospun PAN fibers before the carboniza-
tion process [138]. The obtained hollow carbon nanofibers 
exhibit a significant change in porous structure, which dem-
onstrates a high specific capacity of 520 mAh  g−1 at 1 C 
current density when used as the anode for LIBs. Li and 
co-workers presented a freezing-assisted strategy to achieve 
N and O co-doped hollow carbon spheres (DHCSs/RGO) 
composite material (Fig. 8h) [136]. They were coated with 
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Table 1  Overall electrochemical performances of rechargeable batteries making use of nanohollow carbons, graphite, and hard carbon materials

Batteries Materials Highest capacity (mAh  g−1) Rate capability (mAh  g−1) Cycle numbers References

LIBs N-doped hollow CNT–CNF 1150 at 0.1 A  g−1 320 at 8 A  g−1 3500 [127]
LIBs N-doped hollow carbon nanoflowers 528 at 2 C 298 at 10 C 1000 [128]
LIBs N-doped double-shelled hollow carbon 

spheres
920.3 at 0.1 A  g−1 292.9 at 5 A  g−1 300 [129]

LIBs Macro–mesoporous hollow carbon spheres 530 at 2.5 A  g−1 180 at 60 A  g−1 1000 [130]
LIBs Carbohydrate-derived hollow carbon spheres ~ 400 at 1 C ~ 100 at 2 C 200 [131]
LIBs Hollow carbon nanoparticles 863 at 0.1 A  g−1 171 at 6.4 A  g−1 200 [132]
LIBs N-doped mesoporous carbon hollow spheres 485 at 0.5 A  g−1 214 at 4 A  g−1 1100 [133]
LIBs Graphitic hollow carbon spheres 2007 at 0.1 A  g−1 410 at 5 A  g−1 1000 [134]
LIBs Self-healing core–shell hollow carbon fibers 603.9 at 1 A  g−1 499 at 2 A  g−1 1500 [135]
LIBs N and O co-doped hollow carbon spheres 1395 at 0.1 A  g−1 606 at 5 A  g−1 600 [136]
LIBs Hollow carbon nanotubes 517.7 at 0.05 A  g−1 436.4 at 0.2 A  g−1 2000 [137]
LIBs N-doped hollow carbon fibers ~ 600 at 0.5 C ~ 200 at 50 C 500 [138]
LIBs Graphite 393 at 0.1 C ~ 120 at 10 C 800 [139]
LIBs Holey graphite 425.7 at 0.1 C 95.7 at 2 C 500 [140]
LIBs Natural graphite 395.6 at 0.1 C 246 at 50 C 200 [141]
SIBs Multi-shelled hollow hard carbon nanospheres 360 at 0.03 A  g−1 200 at 0.6 A  g−1 150 [142]
SIBs Hollow carbon nanospheres 160 at 0.2 A  g−1 ~ 50 at 10 A  g−1 100 [143]
SIBs P-doped hollow carbon sphere 234 at 0.1 A  g−1 129 at 1.5 A  g−1 300 [144]
SIBs S/N-co-doped hollow carbon spheres 185 at 0.5 A  g−1 110 at 10 A  g−1 2000 [145]
SIBs N-containing hollow carbon microspheres 296 at 0.2 A  g−1 114 at 10 A  g−1 1200 [146]
SIBs Hollow carbon nanowires 251 at 0.05 A  g−1 149 at 0.5A  g−1 500 [147]
SIBs Hollow carbon nanofibers 326 at 0.02 A  g−1 85 at 1.6 A  g−1 5000 [148]
SIBs N/P co-doped hollow carbon nanofibers 358 at 0.05 A  g−1 140 at 5 A  g−1 2000 [149]
SIBs N/S dual-doped hollow carbon fibers 264 at 0.1 A  g−1 64 at 10 A  g−1 4000 [150]
SIBs Polyhedral-shaped hollow porous carbon 227 at 1 A  g−1 133 at 20 A  g−1 9000 [151]
SIBs 3D hollow reticulate hard carbon 160 at 0.05 A  g−1 50 at 2 A  g−1 1000 [152]
SIBs Hard carbon 430.5 at 0.03 A  g−1 ~ 50 at 2 A  g−1 200 [153]
SIBs Orange peel-derived hard carbon 180 at 0.015 A  g−1 ~ 120 at 0.14 A  g−1 100 [154]
SIBs Defective hard carbon ~ 300 at 0.1 A  g−1 ~ 125 at 2 A  g−1 200 [155]
PIBs Sulfur-grafted hollow carbon spheres 581 at 0.025 A  g−1 110 at 5 A  g−1 1000 [156]
PIBs Activated hollow carbon nanospheres 370.2 at 0.2 A  g−1 137 at 4 A  g−1 5000 [157]
PIBs N-doped hollow carbon nanospheres 326 at 0.05 A  g−1 141 at 2 A  g−1 2500 [158]
PIBs Hollow interconnected neuron-like carbon 340 at 0.1 C ~ 100 at 2 C 500 [159]
PIBs Hollow multihole carbon bowls 304 at 0.1 A  g−1 182 at 2 A  g−1 1000 [160]
PIBs Soft carbon semi-hollow microrods 314 at 0.1 A  g−1 ~ 100 at 1 A  g−1 500 [161]
PIBs Graphite 263 at 0.1 C 80 at 1 C 50 [162]
PIBs Graphite ~ 232 at 0.5 C / 50 [163]
PIBs Graphite ~ 200 at 0.5 C ~ 80 at 2 C 700 [164]
LSBs Hollow nitrogen-doped carbon nanospheres 1286 at 0.1 C 623 at 5 C 800 [165]
LSBs Fructose-derived hollow carbon nanospheres 1043 at 0.1 C 483 at 5 C 200 [166]
LSBs N-doped porous hollow carbon nanosphere 1224 at 0.2 C 720 at 5 C 500 [167]
LSBs Hollow N-doped carbon polyhedrons 737.1 at 0.2 C 501.3 at 1 C 500 [168]
LSBs Hollow carbon nanofibers 1180 at 0.2 C 820 at 1 C 300 [169]
LSBs Hollow carbon nanofibers 1170 at 1 C 860 at 4 C 300 [170]
LSBs Hollow carbon nanofiber arrays 730 at 0.2 C / 150 [171]
LSBs N-doped hollow carbon spheres 1249 at 0.1 C 688.4 at 2 C 50 [172]
LSBs 3D hyperbranched hollow carbon nanorod 1378 at 0.1 C 663 at 10 C 500 [173]
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thin RGO nanosheets to form a homogeneous 3D porous 
network architecture. Owing to the hierarchical porous struc-
ture and high-level of heteroatom doping, the DHCSs/RGO 

electrode showed excellent electrochemical performance for 
LIBs, including a high reversible capacity (1395 mAh  g−1 at 
0.1 A  g−1), outstanding rate capability (606 mAh  g−1 at 5 A 

Table 1  (continued)

Batteries Materials Highest capacity (mAh  g−1) Rate capability (mAh  g−1) Cycle numbers References

LSBs N-doped hollow carbon nanobowls 1065 at 0.1 C 535 at 4 C 400 [174]
LSBs Hollow carbon foam 699.2 at 0.1 C 525.4 at 0.5 C 100 [175]
LSBs Hollow N-doped porous carbon nanoparticles 980 at 0.5 C 500 at 9 C 300 [176]
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Fig. 8  a Synthesis schematic, and c SAED pattern and TEM image of the activated N-doped hollow CNT–CNF hybrid material. b SAED pat-
tern and TEM image of the N-doped CNT–CNF–Ni hybrid material. d TEM and HRTEM images of CNT. e Electrochemical performance 
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 g−1), and long cycle life (600 cycles). Other strategies, such 
as directly carbonized [181–183], self-assembled [184–186], 
and microwave-assisted [187], have been employed to pre-
pare nanohollow carbon materials for application in LIBs.

3.2  Sodium‑Ion Batteries

As a low cost and sustainable alternative to LIBs, sodium-
ion batteries (SIBs) have been extensively studied over the 
past few years. The radius of  Na+ is much larger than that of 
 Li+ (1.5 times), often leading to slow intercalation kinetics 
and poor performances. As an electrode material, hollow 
carbon nanostructure can provide more space for  Na+ inter-
calation and low energy barrier, thus improving the electro-
chemical kinetics and overall performances. For example, 

Wan and co-workers proposed a controllable structure engi-
neering to prepare multi-shelled hollow hard carbon nano-
spheres (MS-NHCMs), which were derived from the hollow 
resin nanospheres with 3-aminophenol (3-AP) and formalde-
hyde (3-AF) as the precursors (Fig. 9a) [142]. In particular, 
single-shelled NHCM (1S-NHCM), double-shelled NHCM 
(2S-NHCM), three-shelled NHCM (3S-NHCM), and even 
four-shelled NHCM (4S-NHCM) could be realized through 
accurate control of the shape parameters (Fig. 9b–e). These 
NHCM electrodes can deliver better electrochemical per-
formance compared with other carbon-based materials for 
SIBs. For example, the 4S-NHCM showed a high specific 
capacity of 360 mAh  g−1, good rate capability (200 mAh  g−1 
at 2 C), and cycle stability for 150 cycles (Fig. 9f). There are 
other studies on hollow carbon microspheres, reported for 
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SIBs [143, 144, 188–190]. For example, Dong et al. used 
the polymethyl methacrylate (PMMA) spheres templates to 
synthesize S/N-co-doped hollow carbon spheres (SN-HCSs), 
which showed excellent rate capability (110 mAh  g−1 at 
10 A  g−1) and cycling performance (2000 cycles) [145]. 
N-containing hollow carbon microspheres (N-HCSs), made 
by using modified  SiO2 as the template and RF the carbon 
precursor, displayed a reversible capacity of 114 mAh  g−1 
at a high current density of 10 A  g−1, and long-term cycle 
stability (> 1200 cycles) [146].

Hollow carbon nanowires and nanofibers have also been 
used as electrode materials for SIBs [191–194]. For exam-
ple, Cao and co-workers fabricated hollow carbon nanow-
ires (HCNWs) via pyrolyzation of the hollow polyaniline 
nanowire precursors [147]. The HCNWs showed a tube-
like structure with an outer diameter of ~ 150 nm and an 
inner diameter of 20–40 nm (Fig. 9g, h). They exhibited 
a high reversible specific capacity of 251 mAh  g−1, when 
used as electrodes in SIBs. Besides, hollow carbon nanofib-
ers (HCNFs) have been prepared by a sacrifice template 
(PMMA), followed by pyrolyzation of the polyaniline hol-
low nanofiber precursors (Fig. 9i) [148], showing a superior 
electrochemical performance, when used as anode materials 
in SIBs (Fig. 9j), e.g., a high reversible capacity of 326 mAh 
 g−1 and good capacity retention of 70% after 5000 cycles. 
Liang and Yang et al. synthesized N/P co-doped hollow 
carbon nanofibers and N/S dual-doped hollow carbon fib-
ers, which were employed as the anodes in SIBs [149, 150]. 
Some resin and biomass-derived hollow carbon materials 
have been reported for SIBs. For instance, Shen and co-
workers synthesized the polyhedral-shaped hollow porous 
carbon through Ni-ion exchanged resin, together with the 
carbonization and activation processes [151]. Li et al. used 
the rape pollen grains as the carbon precursors to acquire 3D 
hollow reticulate hard carbon through the hydrothermal and 
high-temperature pretreatment [152]. When employed as the 
anode in SIBs, this biomass-derived hollow carbon realized 
an outstanding capacity retention of 90% after 1000 cycles.

3.3  Potassium‑Ion Batteries

Recently, potassium-ion batteries (PIBs) have attracted atten-
tion as promising alternatives to LIBs and SIBs. In particu-
lar, PIBs are expected to offer a higher operation potential in 
wider voltage range, compared to SIBs. Al-K intermetallic 

compounds would not be formed during charge–discharge 
processes, and thus, the low-cost Al foil can be used as the 
current collector for both cathode and anode electrodes in 
PIBs. Up to now, there have been reports on hollow car-
bon materials that are used as active materials for PIBs. For 
instance, Mitlin and co-workers proposed the sulfur-grafted 
hollow carbon spheres (SHCS) as anode materials for PIBs 
[156]. These SHCS were synthesized via a sulfuration strat-
egy, with RF resin as the carbon source, sulfur powder as 
the sulfur source, and silica sphere as the hard template 
(Fig. 10a). They showed a monodispersed hollow sphere 
nanostructure, with a rather uniform diameter (~ 400 nm) 
and thickness (~ 40 nm) (Fig. 10b, c). There is an amorphous 
structure observed, and the C, O, S elements were seen to 
evenly distribute in the carbon skeleton (Fig. 10d, e). Ben-
efiting from a high amount of sulfur-grafted (38 wt%) and 
hollow structure, the SHCS electrode displayed an impres-
sive electrochemical performance for PIBs (Fig. 10f). They 
can deliver an ultrahigh reversible capacity of 581 mAh 
 g−1 and an excellent capacity retention of 93% after 1000 
cycles. Activated hollow carbon nanospheres (AHCSs) have 
been synthesized and used as anode materials for PIBs, with 
RF as the carbon source and  SiO2 as the template [157]. 
Recently, Chen et al. utilized PDA as both the carbon and 
N-doping sources and silica spheres as the template in pre-
paring N-doped hollow carbon nanospheres (N-NHCMs), 
which gave a high reversible capacity of 154 mAh  g−1 (1.0 
A  g−1 current density) over 2500 cycles, when employed as 
the anode electrode in PIBs [158].

Taking the integrity and effectiveness of structures into 
consideration, the cross-linked hollow structure can not 
only improve the structural stability, but also increase 
the electron and ion transfer rate of materials. In view 
of this, Wan and co-workers have proposed a structural 
engineering strategy to design carbon materials such that 
they display a hollow interconnected neuron-like carbon 
architecture (HINCA) [159]. Such a structure was pre-
pared by high-temperature carbonization of a commer-
cial RF resin foam. There was structural transformation, 
as shown in Fig. 10g–i, where the SEM images of the 
HINCA-type products showed a morphological change at 
different treatment temperatures of 365, 400, and 450 °C. 
The inner cavity increased, and the wall thickness shrunk 
with the increase in temperatures. The effect of heating 
rate (Fig. 10j–l) did not appear to affect the interconnected 
architecture, as shown for those at different heating rates 
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of 0.5, 10, and 15  °C  min−1. When the carbonization 
temperature was 1300 °C, the as-fabricated HINCA-type 
electrode shows superior electrochemical performance, 
compared with the solid carbon foam and power carbon 
electrode for PIBs (Fig. 10m). In particular, it delivered 
a reversible capacity of 340 mAh  g−1 at 0.1 C and main-
tained 72.1% of capacity after 500 cycles. With a simi-
lar structural design, Qin and co-workers obtained hol-
low multihole carbon bowls (CHMBs) by hydrothermal 
carbonization coupled with a soft template (emulsion) 
strategy [160]. The as-fabricated CHMBs electrodes 
showed a high specific capacity of 304 mAh  g−1 at 0.1 A 
 g−1 and ultra-long cycling stability (1000 cycles). More 
recently, Mai et al. synthesized polycrystalline soft carbon 

semi-hollow microrods, which gave an impressive revers-
ible capacity of 314 mAh  g−1, when used as an anode for 
PIBs [161].

3.4  Lithium–Sulfur Batteries

Lithium–sulfur batteries (LSBs) are among the most prom-
ising next-generation batteries systems, owing to their high 
theoretical specific capacity (1675 mAh  g−1), where the 
sulfur cathode also offers other advantages, including an 
abundant source, low cost, and environmental friendliness. 
However, LSBs face challenges in practical sense, such as 
a low electronic conductivity and large volume expansion 
of the sulfur cathode, the dissolution and shuttle effect of 
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polysulfide, leading to a rapid capacity fading and poor cycle 
stability, together with low Coulombic efficiency. To solve 
some of these problems, NHCMs have been employed as 
host materials for sulfur cathode, owing to their good elec-
tronic conductivity and tailored shell structures. Indeed, 
several NHCMs have been reported as host materials for 
application in LSBs, including those hollow carbon nano-
spheres, hollow carbon nanotubes/nanofibers, hollow carbon 
nanobowls, hollow carbon foams, and hollow carbon poly-
hedrons [6, 10, 11].

Among them, hollow carbon nanospheres are the most 
commonly employed host materials for LSBs, owing to the 
large cavity that can effectively accommodate the large vol-
ume expansion and shuttle effect of polysulfides during the 
charge–discharge processes [195–205]. For instance, Wang 
et al. synthesized the hollow nitrogen-doped carbon (HNPC) 
by anion exchange and subsequent pyrolysis, using rhombic 
dodecahedral ZIF-8 as the core and imidazolium-based ionic 
polymers as the shell layer (Fig. 11a) [165]. The HNPC-900 
(carbonization at 900 °C) thus made showed a 3D hollow 
nanosphere network (Fig. 11b–d), which was a desirable 
structure for sulfur loading. The HNPC-900 electrode deliv-
ered a superior electrochemical performance compared with 
HNPC-800 and HNPC-1000 in LSBs (Fig. 11e), including 
an excellent reversible capacity of 562 mAh  g−1 at 2 C and 
prolonged cycle stability of 800 cycles. Recently, Shao et al. 
presented a dual template-assisted strategy to prepare hol-
low carbon nanospheres (HCS) with diameters of ~ 300 nm 
[166], which was then employed as sulfur host materials for 
LSBs. It exhibited a high reversible capacity of 585 mAh 
 g−1 at 2 C and long cycle stability of 600 cycles. Notably, 
the hollow carbon nanospheres were also reported to deco-
rate separators in LSBs. For example, Zhang and co-workers 
designed the separator coated with the N-doped porous hol-
low carbon nanosphere (NHC) to improve the utilization of 
sulfur cathode and suppress the shuttle effect of polysulfides 
[167]. They found that the NHC decorated separator could 
achieve superior electrochemical performance, including a 
high reversible capacity of 720 mAh  g−1 at 5 C and an out-
standing cycle lifespan of 500 cycles.

In addition to hollow carbon nanospheres, hollow carbon 
nanotubes/nanofibers have also been reported as favorable 
host materials for LSBs [169–172]. For example, Yu and 
co-workers employed an electrospinning strategy to fabri-
cate hollow carbon nanobubbles on porous carbon nanofib-
ers (CHNBs@PCNFS) [206], which are shown in Fig. 11f–i. 

In the electrospun PVA-LiN3 nanofibers, the porous hol-
low carbon nanobubbles were well attached to the surface 
of hollow carbon nanofibers. Han et al. developed hollow 
N-doped carbon polyhedrons (HNC) as the host of the sulfur 
cathode, which was fabricated via chemical etching and car-
bonization process (Fig. 11j) [168]. Such electrode realized a 
high sulfur loading of ~ 72 wt% and an impressive reversible 
capacity of 501.3 mAh  g−1 at 1 C, together with a long cycle 
life (500 cycles). The HNC also showed a strong chemical 
interaction with polysulfides by the visualized measurement 
of S@HNC and S-NC electrodes during the discharge pro-
cess (Fig. 11k). Other hollow carbon nanostructures, such 
as hollow carbon nanorods [173], hollow carbon nanobowls 
[174], hollow carbon foams [175], and hollow carbon nano-
particles [176], have been also employed as host materials 
for the sulfur cathode.

4  Conclusion and Outlook

In summary, we have reviewed the ongoing progresses of 
exploring nanohollow carbon materials (NHCMs), including 
their synthesis strategies, different types of morphologies, 
and performance in several types of rechargeable batter-
ies. For each of the morphologies of hollow nanospheres, 
nanopolyhedrons, and nanofibers, a proper tuning in the key 
structural features by processing controls, NHCMs show 
great potential as the electrode materials in rechargeable 
batteries, including LIBs, SIBs, PIBs, and LSBs. In addi-
tion to being electrodes by themselves, NHCMs also act 
as an efficient supporting substrate for other active materi-
als, improving the loading, overall electronic conductivity, 
and mechanical stability, leading to faster reaction kinetics, 
better performance, and long cycle ability [207]. Although 
considerable progress has been made so far, in almost all 
aspects, attempted by various strategies as described in this 
overview, there are several unsolved issues and challenges, 
which should be addressed further, especially for develop-
ing large-scale production at low cost, and application in 
energy storage.

For NHCMs fabrication, various synthesis strategies (hard 
templating, soft templating, template-free, MOF-derived, 
and electrospinning) have been developed. In particular, 
the hard template methods are currently the most widely 
used, giving rise to various desired key structure features. 
However, the synthesis processes of hard templates are 
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multi-steps and time-consuming, owing to the pre-making 
and removal of templates, together with the use of high-
cost carbon precursors. The rather tedious, high-cost, and 
low-yield multi-steps are the apparent disadvantages. On the 
other hand, the various soft template methods are relatively 
simple and can be applied on a large scale by eliminating the 
template etching process. However, the morphologies and 
key features of the as-fabricated NHCMs are usually difficult 
to control. The newly emerged template-free approaches give 

opportunities to synthesize NHCMs, by the combination of 
facile processing, low cost, and generally high uniformity. 
For example, aerosol spraying is a typical template-free 
approach, in which the high production yield, cost-effec-
tiveness, and continuous process enable a better control in 
the desired morphologies and compositions. Nevertheless, 
most of the template-free methods are relatively immature 
up to now. Therefore, further development of the exist-
ing template-free methods and devising new ones shall be 
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Fig. 11  a Schematic illustration of the synthesis route for HNPC. b SEM image and c, d TEM images of the HNPC-900. e Electrochemical 
performance of HNPC electrodes for LSBs. Reproduced with permission from Ref. [165]. Copyright 2019, Wiley–VCH. f SEM images of the 
electrospun PVA-LiN3 nanofibers. g, h SEM images of PCNFs after calcination. i TEM image of the CHNBs@PCNFs. Reproduced with per-
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HNC and S-NC electrodes during the discharge process for LSBs. Reproduced with permission from Ref. [168]. Copyright 2019, Cell Publish-
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pursued for NHCMs, especially those leading to the desired 
hollow structures. In this connection, metal–organic frame-
works derived nanohollow carbon polyhedrons and electro-
spun nanohollow carbon nanofibers are among the exciting 
ongoing research and development. There is no doubt that 
more effective strategies will appear in the coming years, 
and they will be explored for applications in energy storage 
and other related devices.

For NHCMs applications, the first key issue is the rel-
atively low volume energy density that can be derived, 
because of their low tap density. Therefore, new hollow 
nanostructures shall be designed such that the cavities in 
NHCMs will be used as much as possible. For example, the 
development of multi-shelled and yolk–shell structures can 
be a suitable approach to improve the volumetric energy 
density, with other advantages. Secondly, the storage mecha-
nisms of NHCMs when employed as the electrode materials 
for rechargeable batteries need to be understood thoroughly. 
In addition, the key structural features such as the inter-layer 
spacing of NHCMs shall be different for the respective Li-
ion, Na-ion, and K-ion batteries, owing to their different 
ionic radii and diffusion rates. Also, the specific energy stor-
age  (Li+,  Na+,  K+) mechanisms would be different among 
them. For example, for rechargeable LSBs, the HNCS can be 
used as a host material to effectively fill the sulfur cathode 
and suppress the shuttle effect of polysulfides. Therefore, 
the corresponding energy storage mechanisms need to be 
properly investigated and understood with the help of some 
advanced in situ characterizations, such as in situ XRD, 
SEM, TEM, AFM, together with some theoretical calcula-
tions, including the density functional theory (DFT), and 
molecular dynamics (MD). Thirdly, heteroatom doping 
(N, O, B, S, P, etc.) has been widely applied in NHCMs 
to improve their electrochemical performance and reac-
tion kinetics. The heteroatom types, corresponding doping 
levels, and their impact on the structures and properties of 
NHCMs need to be further explored. Fourthly, the NHCMs 
electrodes often exhibit certain initial irreversibility, which 
would severely consume ions from the electrolyte and cath-
odes, leading to low Coulombic efficiency and poor cycle 
lifespan. Thus, it would be of value to develop an appropri-
ate ion pre-embedding technique for the full-battery systems. 
We hope that this review can provide an avenue for better 
understanding of the design and synthesis of nanohollow 
carbon materials and stimulate greater interests and efforts 
toward their functionalization and applications.
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