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Abstract: A carbon-nanotube (CNT) electrophoretic deposition (EPD) process has been developed to pre-

pare a field emission layer in plasma display panels (PDP) for discharge voltage reduction. The CNT layer

as a source of discharge priming electrons has been fabricated on the PDP front panel. The balling grinding,

mix-acid treatment and EPD parameters have been investigated in order to obtain good uniformity and ex-

cellent field emission capability of CNT layer, in order to meet the specifications of CNTs in PDP cell. The

measured turn-on field was around 1.1 V/μm in the field emission testing while the minimum sustaining voltage

was decreased by 30∼40 V with the use of CNT layer in the discharge testing.
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Introduction

High operating voltage is still one of the major issues
to overcome in current plasma display panels (PDP),
especially in large-sized panel market. There have been
several attempts to reduce the PDP operating voltage:
Adding auxiliary structure on coplanar electrode [1] or
front dielectric surface [2]; inducing a partial strong
electric field in the cell space, resulting in the decrease
of the minimum sustain voltage. Enhancing secondary
electron emission capability of the protective layer is
another effective way to significantly decrease the dis-
charge voltage. Alternatively, PDP operating voltage
reduction can be achieved by changing the MgO surface
morphology and crystal structure by annealing process
[3] or via altering preparation conditions [4] to increase
the secondary electron emission. Last but not least,
PDP operating voltage reduction can be achieved by
developing the composite protective layer, for exam-
ple, SrO/MgO [5], MgO/Graphite-in-diamond (GiD)
[6], MgO/TiO2 [7], MgO/nano Au [8], ZnO/MgO [9]
and MgO/NiO [10], in order to increase the secondary

electron emission. The driving voltage could be reduced
in the range of 10∼100 V by the above methods.

A special electrophoretic deposition (EPD) technique
for carbon-nanotube (CNT) auxiliary layer preparation
has been developed in this investigation, playing a role
as the source of field-emission electrons in PDP cell
while the lower discharge voltage was realized by the
increasing priming electrons. Good uniformity and ex-
cellent field emission capability of CNT layer are the im-
portant factors enhancing its application in PDP cells.
EPD is suitable for preparing this kind of CNT layers
by using special technical processes and controlling pro-
cess parameters. Electrophoretic CNT layer has been
prepared at specified area on the dielectric layer of the
front panel. This kind of field emission layer has the
same function as the above examples, i.e., reducing the
discharge voltage by increasing the electrons in PDP
cell.

Experimental

The front panel of PDP with CNT field emission layer
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Fig. 1 Microfabrication processes of PDP front panel with CNT auxiliary layers.

was fabricated by surface-micromachining technology.
The main fabrication process steps are described and
sketched in Fig. 1(a)-(h) as follows.

a. Chromium/Copper (Cr/Cu) was sputtered as the
seed layer on an ITO glass substrate for the electroplat-
ing of Cu electrode.

b. Photoresist spin coating and lithography were per-
formed and then Cu (3-5 μm) was electroplated on the
Cr/Cu seed layer.

c. Remove the photoresist and the seed conducting
layer. Photoresist spin coating and lithography were
performed.

d. Sputter Cr (0.1 μm) on Cu electrode strip and
photoresist. Make a Lift-off of Cr layer to form the
Cr/Cu/Cr bus electrode.

e. Photoresist spin coating and lithography were per-
formed to develop the area not needing ITO. ITO was
etched to form the transparent electrode. Remove the
photoresist.

f. Glass dielectric layer was fabricated by screen
printing and sinter.

g. Photoresist spin coating and lithography were per-
formed. Sputter Cr seed layer.

h. Lift-off of Cr layer to leave the seed layer where
CNT layer will be fabricated. The CNT film was de-
posited on seed conducting layer by EPD. Initially,
balling grinding was used to CNTs with tube diame-
ters ranging from 20 to 30 nm, and then boiled in mixed
acids (H2SO4:HNO3 = 3:1) at 60℃ for 2∼4 h. Then,
CNTs in given concentration were dispersed in distilled
water and 0.5∼2 g/l Mg(NO3)2·6H2O as the charger
salt was added into the suspension. And then the sus-

pension was sonicated for 1-2 h at room temperature
to produce a homogeneous suspension. The CNT film
was deposited on the conducting layer by EPD tech-
nique. The composition and the process conditions of
EPD are listed in Table 1. After the EPD process, the
substrate was carefully pulled upwards from the EPD
cell to avoid any influence of drag force between the
suspension and the surface of the deposited film. The
panel was dried slowly in air at room temperature and
in horizontal position to achieve a homogeneous and
smooth surface of the CNT films.

Table 1 The composition content and operation

conditions of electrophoretic deposition

Items Parameters

Solvents H2O

CNTs 0.2∼0.7 g/l

Mg(NO3)26H2O 0.5∼2 g/l

pH 4∼6

Temperature 20∼30℃

DC electric field 10∼30 V/cm

Electrode distance 1∼3 cm

Electron field-emission testing and discharge test-
ing was carried out by the setup shown in Fig. 2.
Field-emission property was measured at a pressure of
1.5×10−5 Pa. The electric field is the support DC volt-
age divided by distance between two CNT stripe layers.
For discharge testing, a Ne-Xe gas mixture with the to-
tal pressure 450 Torr was used as the discharge gas, and
the Xe content was fixed at 7%. The frequency of the
driving voltage waveform for sustain discharges was 50
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kHz, and the width was 10 μs. Rear panel was just to
form the cell space with front panel.
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Fig. 2 Sketch of the test setup for CNT field emission
testing and PDP discharge testing.

Results and discussion

EPD is achieved via the motion of charged CNTs, dis-
persed in a suitable solvent, towards an electrode under
an applied electric field. EPD offers advantages of low
cost, process simplicity, uniformity of deposits, control-
lable thickness, microstructural homogeneity, and de-
position on complex shaped substrates [11, 12]. The
pretreatment to CNT is to obtain pure and dispersed
emitting materials. As is well known, CNT has excel-
lent field emission characteristics and possesses the ad-
vantages of high field enhancement factor, low thresh-
old field, chemical inertness and thermal stability. CNT
may be the right material for producing priming elec-
trons in PDP. However, as-grown carbon nanotubes are
intrinsically inert, often aggregated or entangled, and
may contain impurities (such as amorphous carbon or
catalytic metal particles).

Balling grinding was used for good dispersion and
defects increase. A mixture of concentrated nitric and
sulphuric acids can simultaneously purify, shorten and
functionalize CNTs. Under such aggressive conditions,
defective sites in the CNTs are attacked, resulting in
the formation of fragmented CNTs decorated with car-
boxylic acid and other oxygen-containing groups on
their surface. Figure 3(a) shows the FT-IR spectra of
CNTs before and after the above pretreatment, which
proved these groups functionalization of CNTs. 1080
cm−1 is O-H deformation vibrations and 1166 cm−1

is assigned to C-O stretching vibrations; 1378 cm−1

is C-O single bond stretching and 1400 cm−1 is O-H
bending; 1650-1750 cm−1 is -C=O stretching vibra-
tions. These acidic groups electrostatically stabilize
the CNTs in water, or other polar liquids. The Ra-
man spectra curves of as-grown CNTs and CNTs after

pretreatment are shown in Fig. 3(b). The D band and
G band in two curves locate at the approximately same
wavenumber of 1340 cm−1 and 1570 cm−1 in the spec-
tra respectively. It is well known that Raman G band
implies electronic property while D band shows infor-
mation on defects. CNTs have higher peaks at both
D band and G band after pretreatment, which illus-
trates purity improvement and defects increase. Mean-
while, we can also deduced from the Raman spectra
that the relative peak intensities ID/IG becomes bigger
after pretreatment, which further implies the increased
defects. Figure 4 shows the Gaussian grain diameter
distribution of CNTs in water before and after the pre-
treatment. Compared with Fig. 4(a), the decrease of
grain diameter and more regular normal distribution of
Fig. 4(b), illustrates effective improvement on conglom-
eration and dispersibility of CNTs.
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Fig. 3 FT-IR spectra (a) and Raman spectra (b) of CNT.

Besides the pretreatment, to satisfy the demand of
CNT layer used in PDP cell, EPD operation parameters
were also important factors. Low electric field strength
results in poor quality, low density, non-uniform coat-
ings, which do not adhere to the substrate. High elec-
tric field is necessary to deposit uniform and homo-
geneous CNT films on metallic substrates. However,
higher electric field strengths or longer deposition times
CNT aggregates are deposited rather than individual
nanotubes, resulting in a large scatter of the yield
and in poorer homogeneity of the CNT films [13, 14].
Mg(NO3)2·6H2O as the charger salt was added into the
suspension. It has been shown that the presence of
charger salts can play an important role in improving
the adhesion of CNTs to substrates and in increasing
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Fig. 4 Gaussian grain diameter distribution map of as-
grown (a) and after pretreatment (b) CNTs dispersed in
water.

the deposition rate in the EPD process [15-18]. In order

to minimize the effect on PDP transmittance, the CNT

layer is aligned above the bus electrode. Hence EPD

layer with dense CNTs could be deposited on the spec-

ified area with strong electric field of PDP panel. Figure

5 presents the SEM picture and 3-dimensional micro-

graph of EPD CNT layer utilizing CNT before and after

pretreatment. Homogeneity of the microstructure, uni-

form coating thickness and sufficient adherence to the

substrate are the character of EPD layer with CNTs af-

ter effective pretreatment. We observed coarse surface

morphology and irregular CNTs distribution of EPD

layer with no treatment CNTs, resulting from the en-

tanglement and poor dispersion of CNTs in the solvent.

Figure 6 shows the plot of the field-emission cur-

rent density versus the applied electric field. The cur-

rent density of CNTs emitter increases with the ap-

plied field. The measured turn-on field to extract a

current density of 10 μA/cm2 is around 0.8 V/μm. It

is reasonable that the improved field electron emission

of EPD CNTs is due to their pure CNTs with uniform

and dense morphology. And CNTs after pretreatment

provides good electron emission performances for CNT

auxiliary layers. The low turn-on field of CNT aux-

iliary layer plays a beneficial role for PDP discharge.

The well-worked PDP cell has strong electric field and

it maybe distorted during the plasma formation. The

distortion of the electric field is favorable for CNT field

emission which induces more electrons released. And

in the design, field emission layers was arranged within

both cathode and anode region. Consequently, emit-

ted electrons produced alternately from auxiliary layer

in every discharge period, makes the CNTs layer work

more efficiently. Figure 7 shows the discharge photos.

The PDP panel with CNT layer lightened at 180 V,

while the traditional-type panel lightened at 220 V.

Because the influence of CNT layer, however, the dis-

charge uniformity seems not as good as that of no CNT

layer ones. Further research needs to be carried out to

minimize this disadvantage. For example, improve the

uniformity, thickness, area and consistency of the CNT

layer.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 SEM image and 3-dimensional image of EPD CNT layer with different amplified times. (a)(b)(c)(d), utilizing CNT
before pretreatment; (e)(f)(g)(h), utilizing CNT after pretreatment.
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Fig. 6 Field-emission current density versus the applied
electric field for the CNTs field emitters fabricated by EPD.
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Fig. 7 Photograph of sustain discharge testing for PDP
panel with (b) and without (a) EPD CNT layers.

Conclusion

The CNT layer has been demonstrated to reduce the
high driving voltage in AC-PDP. The CNT layer, which
was integrated on dielectric layer overlapping the PDP
bus electrode, was formed by EPD without sheltering
further plasma emission light. EPD layer with uniform
and dense CNTs was deposited on given area of PDP
panel. This morphology of CNT layer guarantees the
excellent field-emission properties of low turn-on field.
As a result, the minimum sustaining voltage was de-
creased by 30∼40 V than that of the traditional AC-
PDP. Further work to investigate the effect to lumi-
nance efficiency using CNT materials for AC-PDP is in
progress.
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