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Carbon Nano-Tube Field Effect Transistors (CNTFETs) are being widely studied as possible 
successors to silicon MOSFETs. Using current mode has many advantages such as performing sum 
operation by means of a simple wired connection. Also, direction of the current can be used to exhibit 
the sign of digits. It is expected that the advantages of current mode approaches will become even 
more important with increased speed requirements and decreased supply voltage. In this paper, we 
present five new circuit designs for differential absolute value in current mode logic which have been 
simulated by CNTFET model. The considered base current for this model is 2 µA and supply voltage 
is 0.9 V. In all of our designs we used N-type CNTFET current mirrors which operate as truncated 
difference circuits. The operation of Differential Absolute Value circuit calculates the difference 
between two input currents and our circuit designs are operate in 8 logic levels. 
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The binary logic has been used in computational circuits for 

many decades. But, in the recent decades Multiple-Valued Logic 

(MVL) is considered as an alternative to the common binary 

logic. MVL allows more information to be transmitted over a 

given set of lines results in reducing complexity of 

interconnections, circuitry and chip area. In this logic, arithmetic 

operations can be executed more efficiently and faster by 

increasing the radix of the systems [1-4]. MVL is a mixture 

design techniques of binary logic and analogue signal processing 

which preserves noise advantages of a digital signal while 

processing greater information content in analogue mode. 

MVL decreases parasitic related with routing and provide a 

higher speed of operations. There have been many efforts to 

derive a reasonable MVL technology based on the voltage mode. 

The most important obstruction to reception of any such 

technology is due to encoding more than two levels of logic in 

the available room temperature for voltage swing is decreased 

[5]. 

The possible approach to solve this problem is to use the 

current mode techniques that use current as a signal carrier, 

either alone or in combination with voltage. Recent experiences 

demonstrate that due to design simplicity and larger dynamic 

range, current mode approach is becoming attractive for the 

performing MVL function especially when the radix is larger 

than 3 and it can be also applied for higher radix MVL circuit 

design successfully [2,3,6]. Multi-valued current-mode circuits 

could be useful only if they can be implemented with today and 

tomorrow technologies [7]. 

For many years MOSFET has been used as a basic element 

of circuit designing. As the miniaturization of silicon based 

circuits reaches its physical limitations, molecular devices are 

becoming hopeful alternatives to the existing silicon technology 
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[8,9]. Especially, unique characteristics of CNT such as high 

mobility of electrons, high ION/IOFF ratio and their unique one 

dimensional band structure that suppresses back scattering and 

near ballistic or ballistic operation has made it as a potential 

successor to silicon technology[10,11]. Circuits designed based 

on the CNT Field Effect Transistors (CNTFETs) consume less 

power and are much faster than the conventional silicon 

FET-based circuits. Moreover, existence of same mobilities for 

n-type and p-type CNTFETs make the transistor sizing of the 

complex circuits much simpler. Moreover, CNTFETs have 

higher ON current than the MOSFETs for the same OFF current.  

Smaller molecular structure of the CNTFETs enables scaling 

beyond what currently available advanced lithographic 

techniques permit and because CNTs do not have surface 

dangling bonds as Silicon, some other crystalline or amorphous 

insulator can be used instead of SiO2, in the structure of CNFETs. 

One dimensional structure of CNTs decreases the resistivity 

which minimizes the energy consumption. Therefore, the power 

consumption density in the channel of CNFET is reduced. In 

addition, ballistic conduction of the CNTs decreases the power 

dissipation in the body of CNTFETs and makes them suitable for 

very high speed applications. Besides the mentioned advantages 

of the CNFETs compared to the conventional silicon-based 

MOSFETs, it has also some drawbacks, such as the problems in 

the process of fabricating the CNFETs on currently available 

CMOS platform. For instance, in the integration process, 

local-gate CNFET is essential. However, most of the local-gate 

designs use metal as the gate and it is quite hard to combine the 

metal gate and the grown CNTs for the integration due to the 

metal melting point limit [12]. In addition, since carbon 

nanotube network films are composed of both semiconducting 

and metallic CNTs, CNFETs fabricated based on CNT network 

films may not turn off completely, which can be troublesome for 

integrated circuit applications. However, encouraging researches 

are being performed to solve these physical problems and 

challenges in the time to come. 

Since the I-V characteristics of CNTFETs are qualitatively 

similar to MOSFET, most of MOS circuits can be translated to a 

CNTFET based design. As one of the hopeful new devices, 

CNTFET avoids most of the basic limitations for conventional 

silicon devices [8,9]. In this paper, we use single-walled carbon 

nanotube (SWCNT) that can be visualized as a sheet of graphite 

which is rolled up and joined together along a wrapping vector 

2211 ananhC ���� , where � �2,1 aa  
are lattice unit 

vectors , and the indices (n1, n2) are positive integers that identify 

the chirality of the tube [13]. Length of Ch is thus the 

circumference of the CNT, which is given by: 

 2 2
1 1 1 2hC a n n n n� � �       (1) 

Single-walled CNTs are classified into one of the following 

three groups, depends on their chiral number (n1, n2): (1) 

armchair (n1 = n2), (2) zigzag (n1 = 0 or n2 = 0), and (3) Chiral (all 

other indices) and here we use CNT with the chiral numbers (17, 

0) and (19, 0)  

Carbon Nano Tube Field Effect Transistor 
(CNTFET) 

The electrons in CNT are confined within the atomic plane 

of graphene. Due to the quasi-1D structure of CNT, the motion of 

the electrons in the nanotubes is strictly restricted. Electrons may 

only move freely along the tube axis direction. As a result, all 

wide angle scatterings are prohibited, and only forward 

scattering and backscattering due to electronphonon interactions, 

are possible for the carriers in nanotubes. 

The operation principle of CNTFET is similar to that of 

conventional silicon devices. This three (or four) terminal device 

consists of a  Semi-conducting Nano-tube, which is acting as 

conducting channel, and bridging the source and drain contacts. 

So, the device can be turned on or off electrostatically through 

the gate. The quasi-1D device structure provides better gate 

electrostatic control above the channel region than 3D and 2D 

device structures. In terms of the device operation mechanism, 

CNTFET can be categorized as either Schottky Barrier (SB) 

controlled FET (SB-CNTFET) or MOSFET-like FET [8,9]. 

The conductivity of SB-CNTFET is controlled by the 

majority carriers tunneling via the SBs at the end contacts. The 

on-current and consequent device performance of SB-CNTFET 

is determined by the contact resistance due to the existence of 

tunneling barriers at both or one of the source and drain contacts, 

instead of the channel conductance. SB-CNTFET exhibits 

ambipolar transport behavior [11]. The work function induced 

barriers at the end contacts can be made to increase either 

electron or hole transport. Consequently both the device polarity 

(N-type FET or P-type FET) and the device bias point can be 

adjusted by choosing the proper work function of source/drain 

contacts. On the other hand, MOSFET like CNTFET exhibits 

unipolar behavior by blocking either electron (P-FET) or hole 

(N-FET) transport with deeply doped source/drain [14]. The 

non-tunneling potential barrier in the channel region, and thus 
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FIG. 2. Inputs of our circuits in transient simulation. 

the conductivity, is modulated by the gate-source bias. Although 

good DC current can be achieved by SB-CNTFET with the 

self-aligned structure, its AC performance is going to be poor 

due to the nearness of the gate electrode to the source/drain metal. 

The ambipolar behavior of SB-CNTFET also makes it 

undesirable for complementary logic design. Taking into account 

both the fabrication achievability and higher device performance 

of MOSFET-like CNTFET as compared to SB-CNTFET. The 

CNTFET that used in HSPICE model is MOSFET-like CNTFET. 

CNTFET and Current Mode Logic 

In many applications, device speed is the most important 

requirement, and so conventional voltage mode silicon based 

devices cannot solve this necessity. Many years ago the current 

mode logic is proposed as a potential solution for this problem 

but combining this logic and MOSFET technology reduces the 

speed advantage pertains to the current mode logic, and 

furthermore have additional imperfection due to using MOSFET 

technology. In recent years, this technology has been entered in 

nano scale region as continues to scale deeper into the nanoscale, 

device non idealities cause I-V characteristics to be substantially 

different from well tempered MOSFETs that increase the 

deficiencies of using silicon based technology. 

In the last few years, the research on nanotechnology has 

been increased particularly on the nanoelectronics. Carbon 

Nano-tube (CNT) technology is at the front of these technologies 

due to the unique mechanical and electronic properties [15,16]. 

Using this technology can reduce the most of the imperfections 

of silicon based technology. There are three reasons why 

CNTFET is the most hopeful technology to expand or 

complement conventional silicon technology: Firstly, the 

operation principle and the device structure are as the same as 

MOSFET devices; we can use again the conventional MOSFET 

based design infrastructure. Secondly, we can use again 

MOSFET fabrication method. Thirdly, the best experimentally 

demonstrated CNTFET device shows very good current 

carrying ability. By employing this technology the device speed 

will be improved. However, utilizing CNTFET together with 

current mode logic style leads to a remarkable increase of device 

speed. 

Five New MVL Current Mode Differential 
Absolute Value Circuits Based On Carbon 
Nano-tube Field Effect Transistors 

In the following designs, we used N-type CNTFET current 

mirrors which act as truncated difference. The main component 

of all these designs is the truncated difference and its operation is 

defined as follows: 

1 * 2 . ( 1 * 2)
1 * 2

0
Z In k In if In k In

In k In
Z otherwise

� � �
	 �

�


�
�

    (2) 

The circuit design of truncated difference is showed in 

Fig.1. 
In some of these designs we used N-type CNTFETs for 

unidirectional current to the output and P-type CNTFET current 

mirrors due to inversing the current direction to achieve the 

appropriate current output direction. These circuits exhibit the 

arithmetic operation |input1-input2|. Input1 and input2 are the 

main inputs of our designs. If input1<input2 then the output will 

be equal to “input2-input1” else we will have “input1-input2” at 

the output node. The Z1 and Z2 are connected to Z which 

describes our final output. In our simulation results we apply 10 

µA as the highest current level in input1 and we will have 14 µA 

as the highest current level for the second input (Fig.2).  

 

FIG. 1. Circuit design of truncated difference. 
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Design 1 

Four CNTFET current mirrors have been used in this design 

which three of them are N-type and the other one is P-type. By 

using M7 we will have the copy of drain current of M3. This 

circuit has two input, and also we used a copy of them in our 

design. In this design Z1 is connected to the drain node of M6 

and Z2 is connected to the source node of M9. 

When input1<input2, M1 and M2 will be turned on and 

base on KCL law the drain current of M3 is equal to zero, hence 

base on current law the M4 and M7 will be cut off, i.e. their drain 

current are equal to 0. The drain current of M5 is equal to input1 

and the drain current of M6 is equal to input1 (current mirror) 

and therefore the output Z1 is “input2-input1”. When M7 is 

cut-off then M8 and M9 will be cut-off and we haven’t any 

current in Z2 and finally the output is equal to “input2-input1”. 

When input2<=input1, M1 and M2 will be turned on and 

base on KCL law the drain current of M3 is equal to 

“input1-input2”, therefore the drain current of M4 is equal to 

“input1-input2”. Base on KCL law  the drain current of M5 is 

equal to “input2” and the drain current of M6 is the same as 

previous (equal to “input2”) so that Z1 is equal to 0. The drain 

current of M7 is equal to “input1-input2” and the P-type current 

mirror will inverse the current direction and the output Z2 and 

thereby the circuit output will be equal to “input1-input2” (Fig. 

3& Fig. 4). 

Design 2 

In this design we used one P-type CNTFET current mirror 

for inversing the current direction, and by connecting the gates of 

M2 and M5, we have two copies of drain current of M1 in drains 

of M2 and M5 which act as truncated and one N-type CNTFET 

which its drain and its gate are connected to each other and its 

duty is unidirectional current from drain node of M5 to the 

output. This circuit has two inputs that in this design we need a 

copy of one of them too. In this design the currents of Z1 and Z2 

come from the source node of M6 and the drain node of M4. 

When input1<input2, M1, M2 and M5 are turn on and base 

on KCL law and truncated difference the current equal to 

“input2-input1” comes from M2 and M5 drain nodes and enter to 

the drain nodes of M3 (upper section) and M6 (lower section) 

respectively but M3 and therefore M4 are cut-off (P-type current 

mirror) and hence the upper path is cut-off too and Z2 is equal to 

0. In lower path the current equal to “input2-input1” that comes 

from drain node of M5 can pass through M6, so that Z1 is equal 

to “input2-input1” and finally the circuit output will be equal to 

“input2-input1”. 

When input2
 input1, M1, M2 and M5 will be turn on and 
in this situation M6 is cut-off   and the drain current of M6 is 

equal to 0, therefore the lower pass is cut-off too and we haven’t 

any current in Z1, and base on KCL law and truncated difference 

the current equal to “input1-input2”enter to the drain node of M2 

and the P-type current mirror will inverse the current direction to 

the output Z2 and thereby the circuit output will be equal to 

“input1-input2”. 

In this design the existence of M6 is important, because if 

we eliminate this transistor and replace it by a wire when 

input2
 input1 the lower path will be open and a current can 
enter to the drain node of M5, hence the output current will 

reduce and our circuit will not work properly (Fig. 5 and Fig. 6).  

Design 3 

In this design we have two truncated difference circuits and 

two P-type current. This circuit has two inputs and a copy of 

them. The currents of Z1 and Z2 exit from the drains of M8 and 

M4 respectively. The function of this design is very simple. 

When input1<input2, M1, M2, M5, M6 will be turn on and 

base on KCL law and truncated difference and current mirror 

there is no current in the drain of M3, therefore M3 and M4 are 

cut-off and we have no any current in Z2 and in this time in the 

 

 

FIG. 3. Design 1 Z=|input1-input2|. 

 

 

FIG. 4. Transient simulation result of design 1. 
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lower section of this circuit the current equal to |input2-input1| 
will enter to the drain node of M6 and the P-type current mirror 

will inverse the direction of this current to the output Z1 and we 

will have the current  equal to “input2-input1” in the output of 

our circuit. 

When input2
 input1, the function in the upper and lower 
sections of this circuit design will swap and the output of circuit 

will be equal to “input1-input2” (Fig. 7, Fig. 8). 

Design 4 

Two N-type CNTFET current mirrors which operate as 

truncated difference and two N-type CNTFET that in each one 

their gates and drains are connected to each other and conduct a 

unidirectional current from drain nodes of M2 and M5 to the 

output are the components of this circuit design. This circuit has 

two inputs and a copy of each one and the currents of Z1 and Z2 

exit from the sources of M6 and M3 respectively. 

When input1<input2, M1, M2, M4 and M5 are turn on and 

base on KCL law and truncated difference the current equal to 

“input2-input1” exit from the drain node of M2 and thereby the 

M3 will be turn on and can conduct this current to the output, 

therefore the current of Z2 is equal to “input2-input1”. And in the 

lower section of this circuit there is no current in the drain of M6 

and thereby in the output Z1. Finally the sum of Z1 and Z2 which 

is the circuit output is equal to “input2-input1”. 

When input2<=input1, the operations of upper and lower 

section of this design will swap, i.e. Z1 and Z2 will be equal to 

“input1-input2” and “0” respectively and therefore the circuit 

output will be equal to “input1-input2” (Fig. 9, Fig. 10). 

Design 5  

One N-type CNTFET truncated difference and one P-type 

CNTFET current mirror and one N-type CNTFET that its drain 

and its gate are connected to each other for the unidirectional 

 

 

FIG. 5. Design 2 Z=|input1-input2|. 

 

 

 

FIG. 6. Transient simulation result of design 2. 

  

 

 

FIG. 7. Design 3 Z=|input1-input2|. 

 

 

 

FIG. 8. Transient simulation result of design 3. 
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current from the drain node of M2 to the output has been used. 

This circuit has two inputs, and Z1 and Z2 are connected to the 

source of M3 and to the drain of M5 respectively and their 

current will be sum at the output node and the result of this sum 

is the output of the circuit. 

When input1<input2, M1 and M2 will be turned on and 

base on KCL law and truncated difference the current equal to 

“input2-input1” exit from the drain node of M2 and thereby M4 

and M3 will be cut-off and turn on respectively, therefore the M5 

which its gate is connected to the gate and drain of M4 will be 

cut-off too, hence we haven’t any current in the output Z2. In this 

time the current equal to “input2-input1” will pass through M3, 

therefore output Z1 and thereby the output of our circuit will be 

equal to “input2-input1”. 

When input2<=input1, M1 and M2 will be turn on and the 

current equal to “input1-input2” enter to the drain node of M2, 

hence we have no current in the drain of M3 and consequently it 

will be cut-off, therefore output Z1 is equal to “0”. In this 

situation P-type current mirror will inverse the current direction 

and the current equal to “input1-input2” will be at the output Z2 

and thereby at output of our circuit. 

In this design the role of M3 is important. If we eliminate 

this transistor and replace it by a wire when input2<=input1 we 

will face with some problems: In some amount of inputs either 

some of drain current of M5 which must enter the output 

completely maybe enter the M2 drain node and proper output 

will be reduced and changed, or some of drain current of M4 that 

must enter to the drain node of M2 completely maybe enter the 

output and the output will be increase, in these situations we will 

not have proper output in our circuit output. We reduced the 

diameter of transistor M3 by changing the chiral number to 

(n1=9, n2=0) and thereby the threshold voltage of this transistor 

has been raised, because when the current comes from M4 drain 

and must enter to the M2 drain completely, some of this current 

can pass through M3 and enter the output which rise and change 

the proper output that rising threshold voltage of transistor M3 

can solve this problem (Fig. 11, Fig. 12). 

Simulation Results 

In this paper we have used  Carbon-nanotube Field Effect 

Transistors SPICE Model which is implemented based on "A 

Circuit-Compatible SPICE model for Enhancement Mode 

Carbon Nanotube Field Effect Transistors" [8,9,17].  This 

 

 

FIG. 9. Design 4 Z=|input1-input2|. 

 

 

FIG. 10. Transient simulation result of design 4. 

 
 

FIG. 11. Design 5 Z=|input1-input2|. 

 

  

 

        FIG. 12. Transient simulation result of design 5. 
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standard model has been designed for unipolar, MOSFET-like 

CNFET devices, in which each transistor may have one or more 

CNTs. In this model we also considered Schottky Barrier Effects, 

Parasitics, including CNT, Source/Drain, and Gate resistances 

and capacitances, and CNT Charge Screening Effects. The 

parameters of the CNFET model and their values, with brief 

descriptions, are shown in Table 1. All of the simulations have 

been done at room temperature at 0.5 V and 0.65 V supply 

voltages. We have used 0.9 V supply voltage for this CNTFET 

circuit and the delay, power consumption and PDP [18] have 

been measured using HSPICE. This model is designed for 

unipolar behavior MOSFET-like CNTFET device. The 

minimum channel length (~10 nm) is confined by the complex 

quantum mechanisms which are not implemented in this model. 

This model has no limitation on the maximum gate length of 

CNTFET.  

For gate length longer than 100 nm, the device is treated as 

long channel device. The transition from the short channel model 

(10 nm 
  Lg 
  100 nm) to the long channel model (Lg > 100 
nm) is continuous and is automatically handled by the model 

[8,9]. 

The CNTFET on-current can be approximated as: 

� �
CNTFET

DDCNT ,

CNT

g V

1 g
th CNTn V

I
Ls s�

� �
�

�
    (3) 

The parameter n is the number of CNTs per device, Vth,CNT  

is the threshold voltage and is about 0.3V for chirality (19, 0) 

semi-conducting CNT, gCNT is the transconductance per CNT, 

and Ls is the source length (doped CNT region), and ρs is the 

source resistance per unit length of doped CNT. CNTFET device 

delay CV/I can be shown as: 

 
� �
,

, ,
,CNT

C L Vg DDgc CNT
CNTFET CNT C CNT R

g V VDDCNT th
� � �� � �

�
 

(4)

 
The gate to channel capacitance Cgc,CNT  is the capacitance 

per unit CNT length [8,9]. We define the pre-factor ηCNT as: 

, ,CNT CNT C CNT R� � �� �       (5) 

Cgtg1, Cgc,CNT

Wg
CNT C n Lg

� � �
�

� �
� �
� �
� �

    (6) 

� �1 g, CNTLs sCNT R� �� �         (7) 

Cgtg is the gate parasitic coupling capacitance connected 

between the gate and the source/drain/ground or the gate of the 

adjacent devices, according to the device layout. Therefore the 

CNTFET device intrinsic speed is degraded by both the 

pre-factor ηCNT,C due to the gate parasitic capacitance and the 

pre-factor ηCNT,R due to the extension series resistance. 

Compared to silicon technology, CNTFET show much better 

Table 1. CNFET model parameters 

Parameter Description Value 

Lch Physical channel length 32 nm 

Lgeff The mean free path in the intrinsic CNT channel 100 nm 

Lss The length of doped CNT source-side extension region 32 nm 

Ldd The length of doped CNT drain-side extension region 32 nm 

Kgate The dielectric constant of high-k top gate dielectric material 16 

Tox The thickness of high-k top gate dielectric material 4 nm 

Csub The coupling capacitance between the channel region and the substrate 20 pF/m 

Efi The Fermi level of the doped S/D tube 6 eV 

 

Table 2.  Comparison simulation results of five circuit designs of differential absolute value in CNTFET model 

PDP (J) Delay (s) Power (W) Proposed Designs 
3.1681E-16 1.688E-11 2.9643E-05 Desgin 1 
2.3790E-16 1.2415E-11 1.9162E-05 Desgin 2 
5.6610E-16 1.8014E-11 3.1425E-05 Desgin 3 
2.8883E-16 1.0440E-11 2.7665E-05 Desgin 4 
1.4102E-16 1.0714E-11 1.3162E-05 Desgin 5 
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device performance based on the intrinsic CV/I gate delay metric 

(6 for N-FET and 14 for P-FET) than MOSFET device at the 32 

nm node, even with device non-idealities. This large speed 

improvement is significantly degraded (by a factor of 5 to 8) by 

interconnect capacitance in a real circuit environment [8,9]. 

Due to the transistor sizing and the set chiral numbers for 

the CNTs, i.e. (17,0) for P-FETs and (19,0) for N-FETs, to make 

the circuits operate correctly, the N-FETs operate faster than the 

P-FETs, in the proposed circuits. Therefore, in spite of using 9 

transistors in design 1, this design has lower power consumption 

and delay rather than design3 which has been used 8 transistors. 

This is due to the fact that in design3 four P-type transistors are 

used whereas in design1 two P-type transistors are used. Design4 

has lower delay and power consumption compared to design1 

because less number of transistors (6 transistors) is used in that 

design and also the critical path of design1 is longer. Design4 has 

two copies of each input whereas design2 has two copies of one 

of the inputs and one copy of the other one. This cause more 

current flowing in design4, which brings about more power 

consumption of design4 compared to Design2. Because of using 

two P-type transistors in design2, this design has more delay than 

design4. Design5 has the lowest power consumption considering 

the proposed designs because this design has just 5 transistors 

and no extra copies of the inputs. However, this design has more 

delay in comparison with design4 because two P-type transistors 

have been used in design5. 

Conclusion 

In this paper we presented five designs of MVL current 

mode Differential Absolute Value circuit, based on Carbon 

Nano-tube Field Effect Transistors. These circuits take 

advantages of current mode and MVL. To evaluate their 

performance, circuits have been simulated on HSPICE by using 

a CNTFET compact model for CNTFET. 

Received 19 September 2010; accepted 1 November 2010; 
published online 17 November 2010. 
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