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Highly Dispersed Cobalt Nanoparticles Embedded 
in Nitrogen‑Doped Graphitized Carbon for Fast 
and Durable Potassium Storage

Xiaodong Shi1, Zhenming Xu2,3, Cheng Han1, Runze Shi1, Xianwen Wu4 *, Bingan Lu5, 
Jiang Zhou1,6 *, Shuquan Liang1,6

HIGHLIGHTS

• Small cobalt nanoparticles are carefully encapsulated into a N-doped carbon shell (Co-NC) by calcining a Prussian blue analogue 
precursor.

• The presence of cobalt nanoparticles and Co-N bonds not only promotes adsorption behavior, but also reduces the diffusion energy 
barrier, enabling fast diffusion kinetics of  K+ ions.

• The good diffusion kinetics and capacitive adsorption behavior of the Co-NC material synergistically contributes to enhanced potas-
sium storage performances.

ABSTRACT Potassium-ion batteries (KIBs) have great potential for 
applications in large-scale energy storage devices. However, the larger 
radius of  K+ leads to sluggish kinetics and inferior cycling performance, 
severely restricting its practical applicability. Herein, we propose a 
rational strategy involving a Prussian blue analogue-derived graphitized 
carbon anode with fast and durable potassium storage capability, which is 
constructed by encapsulating cobalt nanoparticles in nitrogen-doped 
graphitized carbon (Co-NC). Both experimental and theoretical results 
show that N-doping effectively promotes the uniform dispersion of cobalt 
nanoparticles in the carbon matrix through Co–N bonds. Moreover, the 
cobalt nanoparticles and strong Co–N bonds synergistically form a three-
dimensional conductive network, increase the number of adsorption sites, 
and reduce the diffusion energy barrier, thereby facilitating the adsorp-
tion and the diffusion kinetics. These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh  g−1 after 100 and 300 
cycles at 0.05 and 0.1 A  g−1, respectively, demonstrating the applicability of the Co-NC anode for KIBs.
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1 Introduction

As emerging secondary energy storage devices, potassium-ion 
batteries (KIBs) have attracted extensive attention as alterna-
tives to lithium-ion batteries (LIBs) because of the abundant 
potassium resources and the low redox potential of the  K+/K 
couple [1–3]. Transition metal chalcogenides [4, 5], carbon 
materials [6, 7], phosphorus-based materials [8, 9], and alloy-
based materials [10, 11] have been reported as anodes for KIBs. 
Among these systems, carbon materials such as graphitized and 
amorphous carbon have been considered as the most promis-
ing anodes because of their moldable structure and intrinsic 
electronic conductivity [12]. As a typical graphitized carbon 
material, graphite has been widely applied in LIBs. In KIBs, 
graphite anode presents a high capacity of 279 mAh  g−1 and 
a distinct  K+ (de)intercalation plateau above 0.1 V, suggest-
ing its potential favorable applicability [13]. Unfortunately, 
graphitized carbon-based KIBs still suffer from large volume 
change during  K+ intercalation [14], high potassiation energy 
barrier, and slow diffusion kinetics due to the larger radius of 
 K+ [15], leading to a short cycle life and inferior rate capability.

Designing an adjustable structure is considered as an 
effective approach for reducing the volume change and thus 
enhancing the cycling stability. As reported, nanocage struc-
tures could relieve the volume strain of graphitized carbon 
during (de)intercalation of  K+ [16], effectively contributing 
to a durable cycle performance. In addition, the nanospring 
structure of graphitized carbon also enables volume stress 
reduction and provides good cycling stability [17]. Moreover, 
employing a high-concentration electrolyte (HCE) is another 
valid strategy to improve the cycling stability of graphitized 
carbon. Potassium bis(fluorosulfonyl)imide (KFSI) in ethyl 
methyl carbonate (EMC, 1:2.5 molar ratio) has emerged as an 
efficient HCE for graphite anodes [18], where it generates a 
durable inorganic-rich solid electrolyte interphase (SEI) film 
and ensures superior cycling stability. Similarly, another kind 
of HCE (KFSI/1,2-dimethoxyethane (DME)/highly fluorinated 
ether in 1:1.9:0.95 molar ratio) can also ensure a long cycle 
life for KIBs because of the formation of a KF-rich SEI on 
the surface of the graphite anode [19]. Despite this progress, 
the harsh preparation conditions of the adjustable structure 

and the higher cost of the HCE still limit further applications 
of graphitized carbon anodes. Therefore, the development of 
new graphitized carbon materials for KIBs with high capacity, 
stable cycling behavior, and facile synthesis is a significant 
challenge.

Recently, porous graphitized carbon matrices decorated 
with transition metal species (Zn, Fe, Co, and Ni) have been 
derived from metal–organic frameworks or other three-dimen-
sional (3D) precursors [20]. These materials have been widely 
applied in lithium-sulfur batteries [21, 22], lithium metal 
anodes [23], sodium metal anodes [24], zinc metal anodes 
[25], sodium-ion batteries [26], and oxygen reduction catalysts 
[27] because of their unique structure, high electrochemical 
activity, and abundant active sites. These multiple effects may 
improve the potassium storage capability of graphitized carbon 
anodes, which is an aspect worth further exploration.

Herein, cobalt nanoparticles wrapped by N-doped gra-
phitized carbon (Co-NC) were synthesized by carbonizing the 
Prussian blue analogue (PBA) precursor of  Zn3[Co(CN)6]2 and 
employed as anode for KIBs. As expected, Co-NC inherited 
the spherical morphology and porous structure of the PBA pre-
cursor, in which cobalt nanoparticles were uniformly dispersed 
and tightly encapsulated into N-doped graphitized carbon 
through the strong chemical interactions of the Co–N bonds. 
As a result, highly dispersed cobalt nanoparticles could coop-
eratively work with Co–N groups to regulate the electronic 
structure, enhance the electronic conductivity, and facilitate 
the charge transfer as well as the  K+ adsorption. These multi-
ple effects thus strengthen the diffusion kinetics and capacitive 
adsorption behavior of  K+ ions, leading to a reversible capacity 
of 305 mAh  g−1 at 0.05 A  g−1 and a long-term cycling stability 
for up to 1000 cycles at 1 A  g−1.

2  Experimental Section

2.1  Synthesis of  Zn3[Co(CN)6]2 Precursor

Zn(CH3COO)2·2H2O (6 mmol), polyvinyl pyrrolidone 
(PVP, 7.2 g), and Pluronic F127 (4 g) were dissolved in 
200 mL deionized water to form a transparent solution. 
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Thereafter,  K3[Co(CN)6]2 (4  mmol) was dissolved in 
another 200 mL of deionized water and added dropwise 
into the above solution under magnetic stirring and ultra-
sonic conditions in an ice-water bath. After aging the mix-
ture for 24 h, the resulting white precipitate was collected 
and washed several times with deionized water. Finally, 
the  Zn3[Co(CN)6]2 product was obtained by freeze-drying 
the white precipitate for another 12 h. All the chemicals 
are sourced from Shanghai Aladdin Bio-Chem Technol-
ogy Co. LTD (China) and used directly without further 
refinement.

2.2  Preparation of Co‑NC and NC Samples

Co-NC composite was prepared by calcining the 
 Zn3[Co(CN)6]2 precursor at 800 °C for 2 h under a  H2/Ar 
atmosphere (5 vol%  H2) at a heating rate of 4 °C min−1. 
As a reference, N-doped graphitized carbon (NC) was 
obtained by successively immersing the Co-NC compos-
ite into a 3 mol  L−1 HF and 3 mol  L−1 HCl solution under 
vigorous magnetic stirring for 12 h to remove most of the 
cobalt nanoparticles.

2.3  Material Characterization

X-ray diffraction (XRD) patterns were obtained on a 
MiniFlex 600 instrument (Cu  Kα radiation, λ = 0.154 nm, 
Rigaku Corporation, Japan). Scanning electron micros-
copy (SEM) (FEI Nova NanoSEM 230 m, FEI Corpo-
ration, United States of America), transmission electron 
microscopy (TEM) (Titan G2 60–300 with image cor-
rector, FEI Corporation, United States of America), and 
high-resolution TEM (HRTEM) were used to determine 
the morphologies and crystal structures of the sam-
ples. X-ray energy-dispersive spectroscopy (EDS) was 
employed to obtain the elemental compositions. The 
degree of graphitization was evaluated by Raman spec-
troscopy (LabRAM HR800, Horiba Jobin Yvon Corpora-
tion, France), whereas Fourier transform infrared (FTIR) 
spectroscopy (Nicolet 6700, ThermoFisher Corpora-
tion, United States of America) was used to identify the 
coordination groups. Thermogravimetric (TG) analysis 
(Netzsch STA449C, Netzsch Corporation, Germany) 
was carried out to calculate the carbon content. Nitrogen 

adsorption–desorption isotherms and pore structures 
were analyzed using a multistation adsorption apparatus 
(Micromeritics ASAP 2460, Micromeritics Instrument 
Corporation, United States of America). X-ray photo-
electron spectroscopy measurements were carried out on 
a ESCALAB 250Xi spectrometer (ThermoFisher Cor-
poration, United States of America). X-ray absorption 
near-edge structure (XANES) spectra were obtained on 
the photoemission end-station at beamline BL10B of the 
National Synchrotron Radiation Laboratory (University 
of Science and Technology of China).

2.4  Electrochemical Tests of KIBs

Co-NC, NC, and graphite anodes were prepared by grinding 
the active material (80%) with acetylene black (10%) and 
polyvinylidene fluoride binder (10%), followed by dispersing 
the resulting mixture in a specific amount of N-methyl pyr-
rolidone solution to form a black slurry. The slurry was then 
coated on Cu foil and dried in a vacuum oven at 80 °C for 
12 h. Finally, CR2016-type coin cells were packed in a glove 
box with fresh potassium slices, 0.8 mol  L−1 potassium hex-
afluorophosphate  (KPF6) in ethylene carbonate:diethyl car-
bonate (EC:DEC), and glass fiber as the reference electrode, 
electrolyte, and separator, respectively.

Measurements of galvanostatic charge/discharge (GCD) 
profiles as well as cycle and rate performance were con-
ducted on a LAND CT2001 test system (Wuhan LAND 
Electronic Co. Ltd, China) at the specific current densities. 
Cyclic voltammetry (CV) curves at different scan rates were 
obtained on a CHI660E electrochemical workstation (Shang-
hai Chenhua Instrument Co. LTD, China), and electrochemi-
cal impedance spectroscopy (EIS) measurements were car-
ried out in the frequency range of 10 MHz–100 kHz. Finally, 
galvanostatic intermittent titration technique (GITT) data 
were collected on an Arbin BT2000 (Arbin Instrument 
Corporation, United States of America) to calculate the  K+ 
diffusion coefficient (DK).

2.5  Density Functional Theory (DFT) Calculations

All calculations were carried out using the projector-
augmented wave method in the DFT framework, as 
implemented in the Quantum ESPRESSO software. 



 Nano-Micro Lett.           (2021) 13:21    21  Page 4 of 12

https://doi.org/10.1007/s40820-020-00534-x© The authors

The generalized gradient approximation and Perdew-
Burke-Ernzerhof exchange functional were used in the 
calculations. The plane-wave energy cutoff was set to 
30 Ry, and the Monkhorst–Pack method was employed 
for Brillouin zone sampling. The convergence criterion 
of the force calculations was set to 0.001 a.u. The NC 
model was built by replacing one carbon atom with a 
nitrogen atom in the 2 × 2 supercell of graphite, contain-
ing two carbon layers. The Co-NC model was prepared 
by stacking the Co (111) surface with the NC structure. 
The DFT-D2 method was used to account for the van 
der Waals interactions between the Co (111) surface and 
NC. To analyze the interactions between the K atoms and 
the NC structure, we calculated the formation energies 
of K atom insertion into the NC and Co-NC compos-
ites, using an insertion concentration K:C = 1:16. The 
formation energy (Ef) was calculated as the energy dif-
ference of the system after and before the insertion pro-
cess: Ef = EK inserted NC or Co-NC—EK—ENC or Co-NC, where 
EK inserted NC or Co-NC, EK, and ENC or Co-NC represent the 
DFT energies of the K-inserted NC or Co-NC models, the 
energy of a K atom in the bulk, and the energy of the NC 
or Co-NC models, respectively. The energy barriers for 
K atom diffusion in NC or Co-NC were calculated using 
the nudged elastic band method.

3  Results and Discussion

3.1  Structural Characterizations

The preparation process of the Co-NC sample is illus-
trated in Fig. S1. A spherical  Zn3[Co(CN)6]2 precur-
sor with a smooth surface, uniform size (500–800 nm, 
Fig. S2a), and porous structure (Fig. S2b, c) was syn-
thesized through a facile co-precipitation reaction. In 
the subsequent calcination process, many  CN− groups 
transformed into N-doped carbon [28], while  Co2+ ions 
were reduced to cobalt metal under  H2/Ar atmosphere, 
simultaneously catalyzing the formation of a graphitized 
carbon layer [29]. A composite of cobalt nanoparticles 
and NC was then obtained (with a yield of approximately 
44%, based on the TG curve in Fig. S2d). The SEM 
(Fig. S3a) and TEM (Fig. 1a, b) images show that high 
numbers of small nanoparticles composed of spherical 

products were cross-linked with a 3D porous network, 
inheriting the primary morphology and particle size of 
the PBA precursor. The HRTEM (Fig. 1c) and mapping 
(Fig. 1d) images of Co-NC further confirm that the indi-
vidual nanoparticles were wrapped by a carbon layer 
with a certain degree of graphitization. The XRD pat-
tern (Fig. 1e) shows three distinct diffraction peaks at 
44.2°, 51.5°, and 75.9°, which could be indexed to the 
structure of cobalt metal (JCPDS card No. 15–0806). 
Moreover, the broad diffraction peak at 22.5° could be 
assigned to the (002) plane of carbon; the exact content 
of cobalt nanoparticles could be estimated as 33.8 wt% 
based on the TG curve in Fig. S3a, in agreement with 
the EDS results in Fig. S3b. Furthermore, Fig. 1f shows 
the Raman spectrum of the Co-NC sample. The two clear 
peaks at 1321.5 and 1595.3 cm−1 could be assigned to 
the D and G bands (with a moderate ID/IG ratio value of 
1.02), where ID and IG are the intensities of the D and 
G peaks, respectively. The three weaker peaks in the 
200–700 cm−1 region were attributed to metallic cobalt. 
Fig. 1g illustrates the porous properties of Co-NC, show-
ing a BET surface area of 178.34  m2 g−1 and an average 
pore size of 12.41 nm, which enables sufficient contact 
between electrode and electrolyte. In addition, as shown 
in Fig. S4, the BET surface area of the NC sample (222.3 
 m2 g−1) is slightly larger than that of the Co-NC sample, 
which can be ascribed to the formation of hollow carbon 
shells after the dissolution of cobalt nanoparticles in the 
concentrated acid solution.

The XANES technique, which is sensitive to electronic 
states and chemical bonds, was used to analyze the inter-
facial interactions in the Co-NC composite. As shown 
in Fig. 1h, the C K-edge spectra comprised three reso-
nances located at 284.72 (G peak), 287.24 (C1 peak), and 
292.42 eV (C2 peak). These peaks can be attributed to 
the dipole transition of the C 1 s core electrons to π*C = C, 
π*C–N, and σ*C–C antibonding states, respectively [30, 31]. 
These features confirm that the cobalt nanoparticles do 
not perturb the structure of the N-doped carbon shell, 
and additional C-N bonds form out of the graphene layer, 
introducing further sp3 interactions [32, 33]. The FTIR 
spectra in Fig. S3c also confirm the presence of C-N 
groups in the Co-NC composite [21, 27]. As shown in 
Fig. S3d, the Co L-edge XANES spectra of Co–NC show 
two peaks at 778.8 and 793.9 eV, corresponding to the 
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L3 (2p3/2) and L2 (2p1/2) edges. The N-doping states were 
further investigated based on the survey spectrum in Fig. 
S3e, the high-resolution C 1 s spectrum in Fig. S3f, and 
the high-resolution N 1 s spectrum in Fig. 1i. The raw N 
1 s peak could be divided into four main components with 
binding energies of 398.4, 399.7, 400.9, and 401.8 eV, 
corresponding to pyridinic N, pyrrolic N, graphitic N, 
and Co–N bonds [27, 34]. On the other hand, the Co 2p3/2 
peak could be deconvoluted into two components, cor-
responding to metallic Co (778.5 eV) and Co–N groups 
(780.5 eV) [27, 35]. The Co–N and C–N groups provide 
strong interfacial interactions between the core consist-
ing of cobalt nanoparticles and the N-doped carbon shell, 

which promote the uniform dispersion of cobalt nano-
particles and enable adequate coating of the carbon layer 
[21, 36].

3.2  Potassium Storage Performances

The potassium storage behavior of the Co-NC electrode 
was studied by CV and GCD measurements. Because 
cobalt is an electrochemically inert metal, it could not be 
alloyed with  K+ ions. As shown in Fig. 2a, Co-NC exhib-
its the typical potassium storage behavior of the carbo-
naceous anode [12]. In particular, two distinct cathodic 
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peaks appear at approximately 1.55 and 0.55 V in the 
initial intercalation of  K+ ions and disappear in the sub-
sequent scans, which could be attributed to the irrevers-
ible electrolyte decomposition and formation of the SEI 
layer [16, 37, 38]. On the other hand, the evident anodic 
peak at 0.52 V observed in the charge process could be 
ascribed to the deintercalation of  K+ ions. Moreover, the 
good overlap between the CV curves of the second and 
third cycles suggests good cycling reversibility [39, 40]. 
The potential plateaus in the GCD curves shown in Fig. 2b 
are in good agreement with the peaks observed in the CV 
curves. In addition, Co-NC shows initial discharge and 
charge capacities of 1059.8 and 276.4 mAh  g−1, respec-
tively, indicating a low initial Coulombic efficiency (ICE) 
of 26.1%. The low ICE is due to the porous structure of 
Co-NC, which leads to a larger contact area between the 
electrode and electrolyte, resulting in a higher electrolyte 

consumption during the formation process of the SEI 
[41–44]. Fig. 2c illustrates the cycling performances of 
the Co-NC electrode at low current densities. The elec-
trode delivers specific capacities of 305 and 208.6 mAh 
 g−1 after 100 and 300 cycles at 0.05 and 0.1 A  g−1, respec-
tively. To investigate the favorable effects of the dispersed 
cobalt nanoparticles, we compared the cycle performances 
of Co-NC with those of NC and graphite anodes (Figs. S5, 
S6). As shown in Fig. 2d, e, Co-NC exhibits high revers-
ible capacities of 208.4 and 129.4 mAh  g−1 after 200 and 
700 cycles at 0.2 and 0.5 A  g−1, respectively; these val-
ues are higher than those of NC throughout the cycling 
process, indicating that the presence of cobalt nanopar-
ticles could improve the potassium storage capability. 
Similar results were observed in the comparison of the 
rate capabilities (Fig. 2f), with Co-NC exhibiting aver-
age discharge capacities of 342.6, 264.2, 187.5, 175.4, 
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120.3, and 80.2 mAh  g−1 at 0.05, 0.1, 0.25, 0.5, 1, and 2 A 
 g−1, respectively. After restoring the current to 0.1 A  g−1, 
Co-NC still delivers a capacity as high as 256.2 mAh  g−1, 
denoting a good rate capability. Based on the long-term 
cycling performances (Fig. 2g) and GCD curves at various 
cycles (Fig. S7) of the Co-NC anode, the dispersed cobalt 
nanoparticles also provide low potential polarization and 
good cycling stability up to 1000 cycles, with reversible 
capacities of 115.7 and 78.5 mAh  g−1 at 0.5 and 1 A  g−1, 
respectively. Furthermore, as shown by the correspond-
ing Coulombic efficiency (CE) results in Fig. 2c–g, all 
curves show a gradual upward trend in the initial stage 
and remain stable at approximately 99% after a certain 
number of cycles, denoting a good cycling reversibility. 
Furthermore, the effects of the calcination temperature and 
type of electrolyte on the potassium storage performance 
of the Co-NC anode were also investigated. As shown in 
Fig. S8, the specific capacity decreases with increasing 
calcination temperature, and the Co-NC anode obtained at 
800 °C delivers a higher capacity and superior cycling sta-
bility. As shown in Fig. S9, the cells with ether-based elec-
trolytes (1 mol  L−1  KPF6 in DME and 1 mol  L−1  KPF6 in 
diethylene glycol dimethyl ether) deliver a higher capacity 
as well as higher ICE values at the initial stage; however, 
the resulting cycling stability is unsatisfactory.

3.3  Analysis of Potassium Storage Kinetics

Based on the equivalent circuit models (Fig. S10) and ana-
lytical equations (Eqs. S1 and S2), the Nyquist plots and fit-
ted ω−1/2versus. -Z″curves of the Co-NC and NC electrodes 
at different cycles in Figs. 3a, b and S11a, b were used 
to analyze differences in the electrochemical impedances 
and  K+ diffusion coefficients. In short, Co-NC delivers a 
lower charge transfer resistance, reflecting an enhanced 
electronic conductivity, which improves the cycle perfor-
mance at high rates. Moreover, we calculated the DK values 
of the Co-NC and NC electrodes at different cycles (Eq. 
S3); these values, summarized in Table S1, highlight the 
faster diffusion kinetics of Co-NC, which is beneficial to 
the rate performance [45, 46]. Furthermore, the capacitive 
behavior of Co-NC is illustrated by the CV curves at differ-
ent scan rates (Fig. S12); b values of 0.572 and 0.695 were 

calculated for the cathodic and anodic peaks of Co-NC, 
respectively (Fig. 3c, Eqs. S4 and S5); the two b values are 
close to 0.5, indicating that diffusion control is the main 
factor affecting  K+ storage, whereas capacitance control is 
a minor factor [47, 48]. The capacitive contribution ratio 
of Co-NC could be quantitatively determined as shown in 
Fig. 3d Eqs.6 and 7), which show that this contribution 
increases from 29.7 to 55.3% as the scan rate increases 0.1 
to 0.9 mV s−1. The moderate capacitive behavior could be 
attributed to the Co–N groups and nitrogen dopants at the 
interface of cobalt nanoparticles and graphitized carbon, 
which introduce additional adsorption sites and accelerate 
the reaction kinetics of Co-NC [49–51].

The diffusion kinetics of graphite, Co-NC, and NC elec-
trodes were investigated by GITT (Figs. S13, S14, and Eq. 
S8). As shown in Fig. 3e, the Co-NC electrode delivers 
a higher  K+ diffusion coefficient than NC and graphite 
throughout the (de)potassiation process, which is in good 
agreement with the EIS results. These results further dem-
onstrate that the presence of cobalt nanoparticles, nitrogen 
dopants, and Co–N bonds effectively enhances the elec-
tronic conductivity, generates active sites, and promotes 
the charge transfer behavior, synergistically endowing 
the Co-NC anode with a faster diffusion kinetics [52, 53]. 
Moreover, the morphology and composition of the Co-NC 
electrode at fully discharged and charged states were char-
acterized by TEM, HRTEM, and EDS, to confirm its struc-
tural evolution. As shown in Figs. 3f, g and S15a, b, the 
stable core–shell structure of Co-NC allows its spherical 
morphology to be maintained without apparent structural 
collapse during the (de)intercalation process, contributing 
to the long-term cycling ability. Moreover, by combining 
the mapping (Fig. 3h) and EDS (Fig. S16a) results with 
the ex situ XRD patterns (Fig. S16b), we further confirmed 
that the core of the cobalt nanoparticles remains stable 
and is not alloyed with  K+ during the charge and discharge 
processes. Therefore, the potassium storage capacity of the 
Co-NC anode may originate from the intercalation of  K+ 
ions in the graphitized carbon layer and the adsorption of 
 K+ ions at the N-doping active sites, as well as at the inter-
faces between cobalt nanoparticles and graphitized carbon 
connected by Co–N groups.

DFT calculations were performed to further eluci-
date the adsorption and diffusion properties of  K+ ions 
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in the NC and Co-NC electrodes. As displayed in Fig. 
S17, Co-NC shows a higher density of states than the NC 
model around the Fermi level, confirming its enhanced 
electronic conductivity [54]. As shown in Fig. 4a–c, the 
adsorption energies of  K+ at the carbon layer of NC, at 
the cobalt nanoparticle/NC interface, and at the carbon 
layer of Co-NC, were calculated as −0.476, −0.982, and 
−1.648 eV, respectively. In short, the Ef value of Co-NC 
is higher than that of NC, while the Ef value of Co-NC at 
the interface is lower than that at the carbon layer, indi-
cating the enhanced adsorption of  K+ ions by Co-NC and 
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Fig. 3  a Nyquist plots and b fitted linear ω−1/2 versus Z″ curves of Co-NC electrode after 0, 5, 10, 20, and 50 cycles; c corresponding log(i) 
vs. log(v) plots at specific peak currents; d capacitive contribution percentage at different scan rates and CV curve with capacitive fraction at 
0.9 mV s−1 scan rate of Co-NC electrode; e GITT results of NC and Co-NC electrodes treated at 50 mA g−1; f TEM, g HRTEM, and h mapping 
images of Co-NC electrode at a fully discharged state

the preference of these ions for the adsorption sites at the 
carbon layer [14, 55]. The diffusion energy barriers of 
 K+ ions in the NC and Co-NC models are displayed in 
Fig. 4d–f, which show  K+ ions diffusing at the interface of 
cobalt nanoparticles and N-doped graphitized carbon pre-
sents the lowest energy barrier, reflecting an enhanced dif-
fusion kinetics in Co-NC [56]. These results indicate that 
the presence of cobalt nanoparticles could not only pro-
mote the adsorption and increase the number of adsorp-
tion sites, but also reduce the diffusion energy barrier and 
facilitate the diffusion kinetics.
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kinetics of  K+ ions, further delivering an enhanced revers-
ible capacity of 305 mAh  g−1 at 0.05 A  g−1 and a good rate 
capability of 80.2 mAh  g−1 at 2 A  g−1. This study may pro-
vide new insights into the structural design of graphitized 
carbon materials with fast diffusion kinetics and durable 
cyclic performance in batteries based on potassium and 
other alkali metal ions.
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4  Conclusion

In summary, a Co-NC hybrid was prepared by calcining 
a  Zn3[Co(CN)6]2 precursor and used as anode for KIBs. 
During the calcination process, abundant  CN− groups 
transform into N-doped carbon, while massive  Co2+ ions 
are converted into small cobalt metal particles, simultane-
ously catalyzing the formation of graphitized carbon and 
core–shell structures. As a result, the presence of Co–N 
bonds ensures the tight encapsulation of cobalt nano-
particles into NC. Moreover, the highly dispersed cobalt 
nanoparticles could synergistically interact with Co–N 
bonds to develop a 3D conductive network, enhance the 
electronic conductivity, and provide effective ion diffusion 
and charge transfer pathways. These multiple advantages 
effectively facilitate the adsorption and (de)intercalation 
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