Supporting Information for

Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped

Graphitized Carbon for Fast and Durable Potassium Storage

Xiaodong Shi¹, Zhenming Xu^{2, 3}, Cheng Han¹, Runze Shi¹, Xianwen Wu^{4, *}, Bingan Lu⁵, Jiang Zhou^{1, 6, *}, Shuquan Liang^{1, 6}

¹School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China

²University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of

³Harvard John. A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts, 02138, USA

⁴School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China.

⁵School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China

⁶Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, People's Republic of China

*Corresponding authors. E-mail: <u>wxwcsu2011@163.com</u> (Xianwen Wu); <u>zhou_jiang@csu.edu.cn</u> (Jiang Zhou)

S1 Relevant Calculation Formulas

S1.1 Calculating the K⁺ Diffusion Coefficient Based on EIS Data

Nyquist plot of EIS is composed by two parts: (a) a straight line at low frequency region is ascribed to Warburg impedance (W_s), which has close relation with the diffusion coefficient of K⁺ ions; (b) a semicircle at middle-high frequency region is corresponding to the resistances of active material, mainly including the contact resistance (R_s) and charge transfer resistance (R_{ct}).

$$\omega = 2\pi f \qquad (S1)$$

$$Z''=R+\sigma\omega^{-1/2}$$
(S2)

$$D = 0.5R^2T^2/S^2n^4F^4C^2\sigma^2$$
 (S3)

According to Eqs. S1 and S2, the corresponding slopes (σ) could be determined through fitting of Z" with $\omega^{-1/2}$. For Formula S3, *R* is the gas constant (8.314 J mol⁻¹ K⁻¹), *T* is Kelvin temperature (293.15 K), *S* is the area of working electrode (1.13 cm²), *n* is the electronic

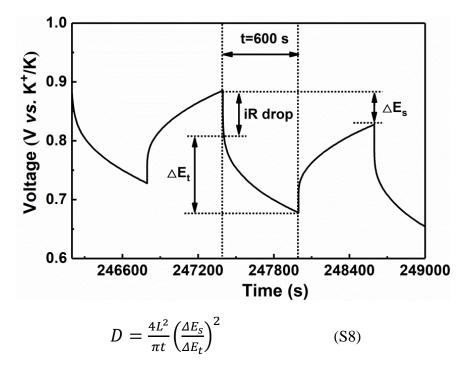
transfer number, *F* is the Faraday constant (96485 C mol⁻¹) and *C* is the concentration of K⁺ ions in the lattice (roughly estimated as electrolyte concentration).

S1.2 Calculating the b Value and Capacitive Contribution Ratio

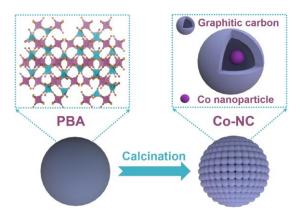
The response current in the CV plot obeys the relationship of Equation S4. As described in Formula S5, the parameter of *b* could be calculated as the slope value of the fitting linear of log(i) vs. log(v).

$$i = a v^{b}$$
(S4)
$$log (i) = log a + b log (v)$$
(S5)

According to the Formula S6, the response current (i) could be divided into two components by introducing new parameters of k_1 and k_2 .


$$i = k_1 v + k_2 v^{1/2}$$
(S6)

 k_1v originates from the capacitive contribution, $k_2v^{1/2}$ originates from the diffusion-limited Faradaic processes. Based on Formula S7, k_1 value could be acquired through the linear relationship between $i/v^{1/2}$ and $v^{1/2}$.


$$i/v^{1/2} = k_1 v^{1/2} + k_2 \tag{S7}$$

S1.3 Calculating the K⁺ Diffusion Coefficient Based on GITT Data

The diffusion coefficient on basis of GITT data is calculated by the following formula:

t is the duration of the current pulse (600 s). *L* is potassium ion diffusion length (cm). For compact electrode, it is equal to thickness of electrode. ΔEs is the quasi-thermodynamic equilibrium potential difference before and after the current pulse, ΔE_t is the potential difference during current pulse.

S2 Supplementary Figures and Tables

Fig. S1 Schematic illustration the preparation process of Co-NC composite

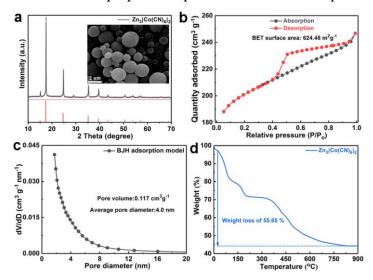
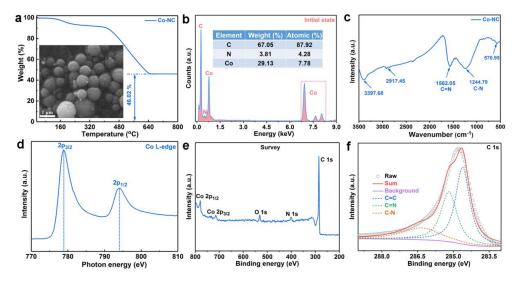



Fig. S2 (a) SEM image and XRD pattern, (b) Isothermal N_2 adsorption-desorption profile, (c) Pore size distribution curve and (d) TG curve of $Zn_3[Co(CN)_6]_2$ precursor

Fig. S3 (a) SEM image and TG curve, (b) EDS element content, (c) FTIR spectra, (d) Co L-edge XANES spectra, (e) Survey spectra and (f) C 1s spectra of Co-NC composite

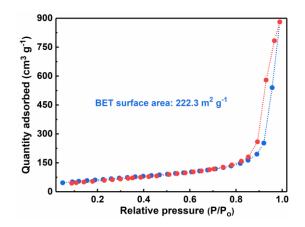


Fig. S4 N₂ adsorption-desorption isothermal curve of NC sample

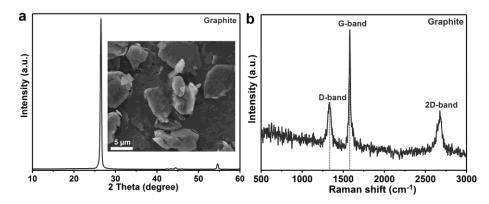
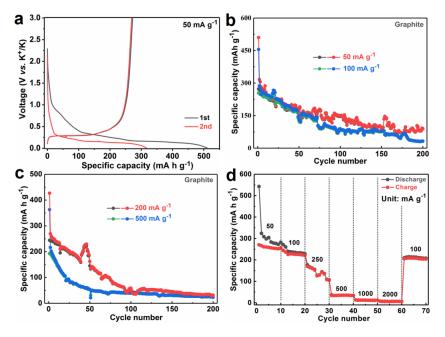
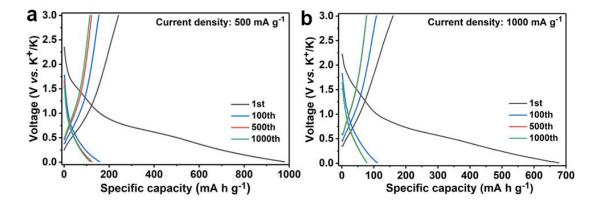




Fig. S5 (a) SEM image and XRD pattern, (b) Raman spectra of graphite

Fig. S6 (a) GCD curve of graphite anode at 50 mA g^{-1} ; (b) Cycling performance of graphite anode at 50 and 100 mA g^{-1} ; (c) Cycling performance of graphite anode at 200 and 500 mA g^{-1} ; (d) Rate capability of graphite anode at different current densities

Fig. S7 GCD curves of Co-NC anode at various cycles (1^{st} , 100^{th} , 500^{th} , and 1000^{th}) under the current density of (**a**) 500 mA g⁻¹ and (**b**) 1000 mA g⁻¹

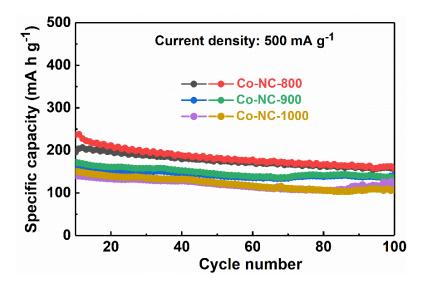


Fig. S8 Cycling performances of different Co-NC anodes at 500 mA g^{-1} from 10 to 100 cycles

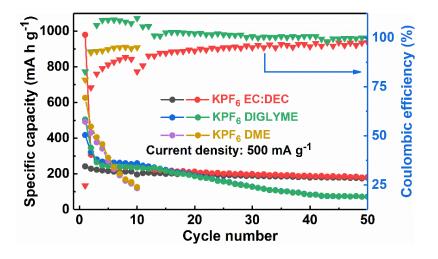


Fig. S9 Cycling performances of Co-NC anode with different KPF₆-based electrolytes at 500 mA g^{-1}

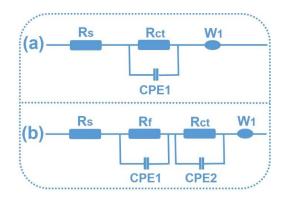
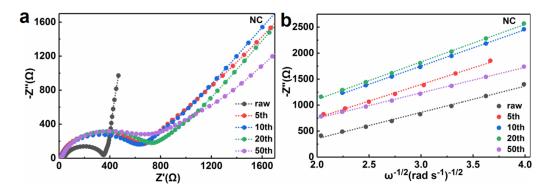



Fig. S10 Equivalent circuit models for the EIS results tested at (a) initial state and (b) after certain cycles

Fig. S11 (a) Nyquist plots and (b) the fitted curves of $\omega^{-1/2} vs. -Z''$ of NC electrode after 0, 5, 10, 20, and 50 cycles

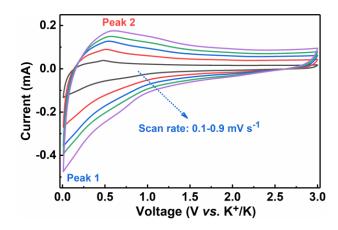


Fig. S12 CV curves of Co-NC electrode at different scan rates from 0.1 to 0.9 mV s⁻¹

Diffusion coefficients	Cycle numbers	Co-NC	NC
$D_{\rm K} [10^{-13} {\rm cm}^2 {\rm s}^{-1}]$	0	3.51	1.64
	5	1.38	1.02
	10	1.57	0.857
	20	1.67	0.804
	50	1.86	1.74

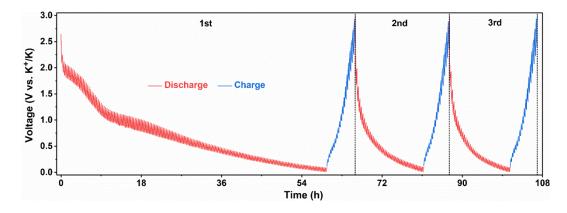
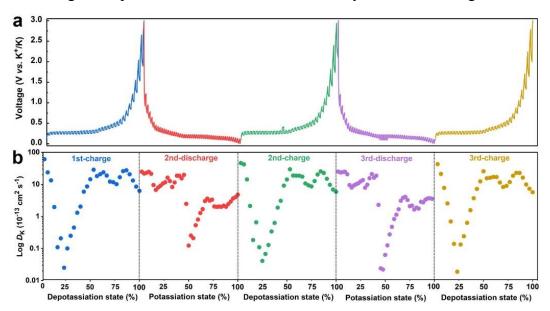



Fig. S13 Voltage-time profiles of Co-NC electrode tested by GITT at 50 mA g⁻¹

Fig. S14 (a) Voltage-time profile tested at 50 mA g^{-1} and (b) K⁺ diffusion coefficient (D_k) of graphite anode calculated by GITT

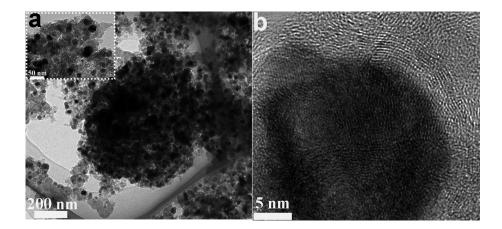


Fig. S15 (a) TEM image and (b) HRTEM image of Co-NC electrode at fully charged state

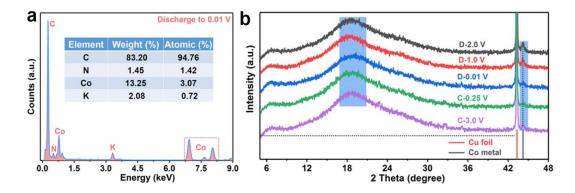


Fig. S16 (a) EDS element content of Co-NC electrode at fully discharged state; (b) *ex situ* XRD of Co-NC electrode

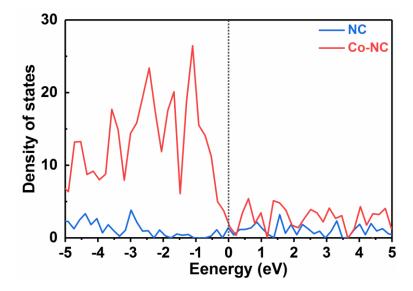


Fig. S17 Density of state (DOS) of NC and Co-NC models