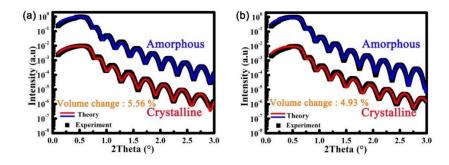
Supporting Information for

Ta-Doped Sb2Te Allows Ultrafast Phase-Change Memory with


Excellent High-Temperature Operation Characteristics

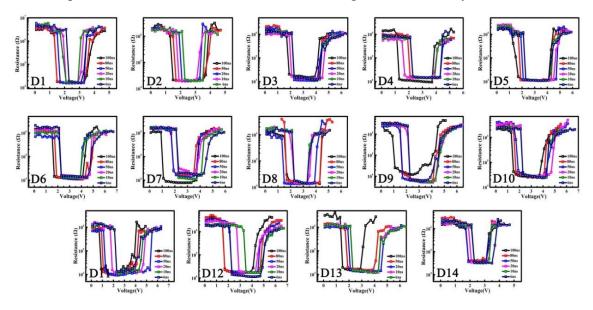
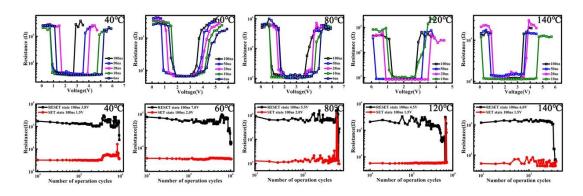
Yuan Xue¹, Shuai Yan¹, Shilong Lv¹, Sannian Song¹, *, Zhitang Song¹, *

¹State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China

*Corresponding authors. E-mail: songsannian@mail.sim.ac.cn (S. Song), ztsong@mail.sim.ac.cn (Z. Song)

Supplementary Figures

Fig. S1 X-ray reflectivity (XRR) measurement results and fitting, for (**a**) ST21 (**b**) TaST21-1. Black lines indicate the original data, red lines indicate the fitting results of the amorphous state, and blue lines indicate the fitting results of the crystalline state

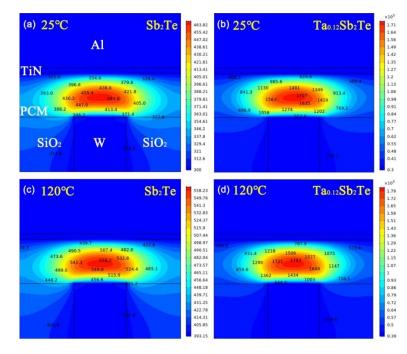

Fig. S2 Performance of devices in a 14-bit array based on TaST21-1

Fig. S3 Cumulative distribution of Set and Reset resistance of devices in the 14-bit array based on TaST21-1. (**a**) The measurement results when the pulse width is fixed at 100 ns. The optimal condition of Set and Reset operation is 1.9 V and 4.9 V, respectively. (**b**) The measurement results when the pulse width is fixed at 6 ns. The optimal condition of Set and Reset operation is 2.3 and 5.5 V, respectively

Fig. S4 Performance of TaST21-1 based phase change memory at different ambient temperatures

Fig. S5 Temperature distribution of a phase change memory based on ST21 and TaST21-1 at different ambient temperatures

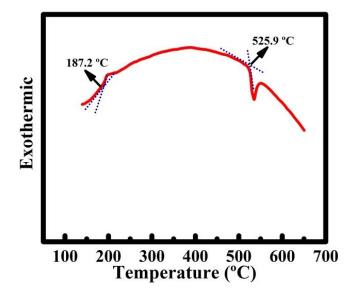


Fig. S6 Differential scanning calorimetry (DSC) measurement of a TaST21-1 film. The heating rate is 10 $^{\circ}$ C min⁻¹

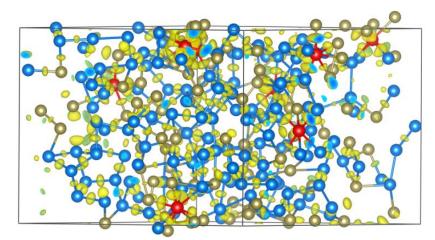


Fig. S7 Structure model of a-TaST21 with CDD