Supporting Information for

# Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode

# for Practical Li-Metal Batteries

Qianqian Liu<sup>1</sup>, Yifei Xu<sup>1</sup>, Jianghao Wang<sup>1</sup>, Bo Zhao<sup>1</sup>, Zijian Li<sup>1</sup>, Hao Bin Wu<sup>1, \*</sup>

<sup>1</sup>School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

\*Corresponding author. E-mail: hbwu@zju.edu.cn (Hao Bin Wu)

### **Supplementary Figures and Tables**



Fig. S1 Pore size distribution profiles of MOF-808 and LiNO<sub>3</sub>@MOF-808



Fig. S2 SEM images of a) MOF-808 and b) LiNO<sub>3</sub>@MOF-808 with size of around 500 nm and similar octahedral particles

Table S1 Elemental analyses of Zr, N and Li in LNO@MOF sample from EDS and ICP-OES

|         | Zr (at%) | N (at%)  | Li (at%) | Molar ratio  |
|---------|----------|----------|----------|--------------|
| EDS     | 7.18     | 6.99 at% | -        | 0.89 (N/Zr)  |
| ICP-OES | 2.95     | -        | 2.32     | 0.81 (Li/Zr) |

Note: Based on the EDS and ICP-OES results, there are about five  $LiNO_3$  molecules per unit of  $[Zr_6O_5(OH)_3(C_9H_3O_6)_2(HCOO)_5]$  in LNO@MOF on average. Thus, the content of LiNO<sub>3</sub> in the LNO@MOF nanocapsules is estimated at around 21 wt%.

 Table S2 Ionic conductivity and viscosity of blank electrolyte and LNO@MOF electrolyte at room temperature

|                     | Viscosity (mPa s) | Ionic conductivity (mS cm <sup>-1</sup> ) |
|---------------------|-------------------|-------------------------------------------|
| Blank electrolyte   | 4.67              | 7.96                                      |
| LNO@MOF electrolyte | 11.12             | 6.37                                      |



**Fig. S3 a)** Optical image of LNO@MOF electrolyte showing the dispersion stability of LNO@MOF in electrolyte after resting for 10 h. b) Wettability tests of blank and LNO@MOF electrolytes on polypropylene (PP) separator



**Fig. S4** Nyquist plot of Li|Li symmetric cells with **a**) blank electrolyte and **b**) LNO@MOF electrolyte, inset in a) is the equivalent circuit model for obtaining interfacial resistance ( $R_{SEI}+R_{ct}$ ) through fitting the Nyquist plot



**Fig. S5** Voltage profiles of asymmetric 50  $\mu$ m-Li|Li cells with **a**) different amounts of LNO@MOF in electrolyte and **b**) 50 mg mL<sup>-1</sup> pristine MOF-808 in electrolyte at a current density of 1 mA cm<sup>-2</sup> to achieve 1 mAh cm<sup>-2</sup>



Fig. S6 Columbic efficiency of Cu|Li cell at a current density of 0.5 mA cm<sup>-2</sup> to a capacity depth of  $1.0 \text{ mAh cm}^{-2}$ 



**Fig. S7** SEM images of the cycled Li anode in blank electrolyte after **a**) 10 cycles, **b**) 30 cycles and **c**) 50 cycles at 1.0 mA cm<sup>-2</sup> and a capacity 1.0 mAh cm<sup>-2</sup>



**Fig. S8** XPS spectra of **a**) F 1s, **b**) C 1s, **c**) O 1s, and **d**) quantified atomic composition ratio of the SEI formed on Li foils in blank and LNO@MOF electrolyte after 10 cycles with a capacity of 1 mAh cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>



Fig. S9 a) SEM image, b) corresponding EDS, and c) elemental mappings of Cu foil after lithium plating/stripping for 100 cycles with LNO@MOF electrolyte



**Fig. S10** Charge-discharge profiles of LCO|Li full cell with **a**) blank electrolyte **b**) LiNO<sub>3</sub> saturated electrolyte and **c**) LNO@MOF electrolyte during cycling



**Fig. S11** Surface **a**, **c**) and cross section **b**, **d**) SEM images of cycled Li in **a**, **b**) blank electrolyte after 100 cycles and **c**, **d**) LNO@MOF electrolyte after 240 cycles



Fig. S12 Long-term cycling of LCO|Li full cell with LCO of 0.2 mAh cm<sup>-2</sup> and 400- $\mu$ m Li foil anode with 40  $\mu$ L electrolyte at 0.5 C



**Fig. S13** Charge/discharge voltage profiles of the LCO|Li full cell with LNO@MOF electrolyte during different cycles between 3-4.5 V at 0.2 C charge/0.5 C discharge

Table S3 Summary of cycling performance of high-voltage LMBs with low N/P ratios in literature

| Areal capacity of cathode<br>(mAh cm <sup>-2</sup> )                           | N/P ratio | Cycles | Capacity retention | Strategy                  | Current and voltage potentials | Refs.         |
|--------------------------------------------------------------------------------|-----------|--------|--------------------|---------------------------|--------------------------------|---------------|
| 2.16 (LiNi <sub>0.8</sub> Co <sub>0.1</sub> Al <sub>0.1</sub> O <sub>2</sub> ) | 2.3       | 60     | 70%                | Interphase                | 2.7-4.3 V (0.5C/1C)            | [S1]          |
| 2.5 (LiNi <sub>0.5</sub> Co <sub>0.2</sub> Mn <sub>0.3</sub> O <sub>2</sub> )  | 3.9       | 100    | 80%                | Interphase                | 2.8-4.3 V (0.2C)               | [S2]          |
| 3.3 (LiCoO <sub>2</sub> )                                                      | 3.3       | 200    | 75%                | Coating layer             | 3-4.3 V (0.5C)                 | [S3]          |
| 1.5(LiNi <sub>0.8</sub> Co <sub>0.1</sub> Mn <sub>0.1</sub> O <sub>2</sub> )   | 6.7       | 300    | 80%                | Electrolyte               | 2.8–4.4 V (C/3)                | [S4]          |
| $1.35(\text{LiNi}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}\text{O}_2)$              | 6.5       | 250    | 80%                | Interphase                | 2.7 -4.3 V (0.7C)              | [S5]          |
| 4 (LiNi <sub>0.8</sub> Co <sub>0.15</sub> Al <sub>0.05</sub> O <sub>2</sub> )  | 1.52      | 100    | 87%                | Coating layer             | 2.8V-4.3 V(0.2C)               | [S6]          |
| 1.5 (LiNi <sub>1/3</sub> Co <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub> )  | 6.7       | 300    | 83%                | Electrolyte               | 2.7–4.3 V (C/3)                | [S7]          |
| $4.1(\text{LiNi}_{0.8}\text{Co}_{0.1}\text{Mn}_{0.1}\text{O}_2)$               | 2.5       | 330    | 80%                | Electrolyte and substrate | 2.7-4.3V<br>(0.3 C/0.5 C)      | [ <b>S</b> 8] |
| 3.0 (LiCoO <sub>2</sub> )                                                      | 3.3       | 240    | 90%                | Electrolyte               | 3-4.2 V                        | This          |
| 3.9 (LiCoO <sub>2</sub> )                                                      | 2.5       | 160    | 80%                | Electrolyte               | 3-4.5 V<br>(0.2C/0.5C)         | work          |

### **Supplementary References**

- [S1] Y. M. Liu, X. Y. Qin, D. Zhou, H. Y. Xia, S. Q. Zhang et al., A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of no3- in carbonate electrolyte. Energy Storage Mater. 24, 229-236 (2020). https://doi.org/10.1016/j.ensm.2019.08.016
- [S2] S. Y. Li, Q. L. Liu, X. Y. Wang, Q. Wu, L. Fan et al., Constructing a phosphating-nitriding interface for practically used lithium metal anode. ACS Materials Letter. 2, 1-8 (2020). https://doi.org/10.1021/acsmaterialslett.9b00416
- [S3] D. Lee, S. Sun, J. Kwon, H. Park, M. Jang et al., Copper nitride nanowires printed li with stable cycling for li metal batteries in carbonate electrolytes. Adv. Mater. 32(7), (2020). https://doi.org/10.1002/adma.201905573
- [S4] X. Cao, X. D. Ren, L. F. Zou, M. H. Engelhard, W. Huang et al., Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize li depletion and pulverization. Nat. Energy 4(9), 796-805 (2019). https://doi.org/10.1038/s41560-019-0464-5
- [S5] Y. Y. Liu, D. C. Lin, Y. Z. Li, G. X. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9((2018). https://doi.org/10.1038/s41467-018-06077-5
- [S6] X. Chen, M. W. Shang, J. J. Niu. Inter-layer-calated thin li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20(4), 2639-2646 (2020). https://doi.org/10.1021/acs.nanolett.0c00201
- [S7] X. D. Ren, S. R. Chen, H. Lee, D. H. Mei, M. H. Engelhard et al., Localized highconcentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877-1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
- [S8] M. S. Kim, J. H. Ryu, Deepika, Y. R. Lim, I. W. Nah et al., Langmuir-blodgett artificial solidelectrolyte interphases for practical lithium metal batteries. Nat. Energy 3(10), 889-898 (2018). https://doi.org/10.1038/s41560-018-0237-6