Supporting Information for

Dimensional Gradient Structure of CoSe2@CNTs-MXene Anode

Assisted by Ether for High Capacity, Stable Sodium Storage

Enze Xu¹, Pengcheng Li¹, Junjie Quan¹, Hanwen Zhu¹, Li Wang², Yajing Chang³, Zhenjie Sun¹, Lei Chen¹, Dabin Yu^{3, *}, Yang Jiang^{1, *}

¹School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China

²School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China

³State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, P. R. China

*Corresponding authors. E-mail: <u>apjiang@hfut.edu.cn</u> (Yang Jiang); <u>dabinyu@sina.cn</u> (Dabin Yu)

S1 Supplementary Tables and Figures

Table S1 Impedance parameters for the equivalent circuits

	Inductor	$R_1(\Omega)$	$R_2(\Omega)$	CPE1		CPE ₂	
	(nH)			V(mF)	exponent(m)	V(µF)	exponent(m)
CoSe2@CNTs-	441	8.55	9.77	313	898	688	606
MXene (ether)							
CoSe2@CNTs-	421	17.5	239	280	512	14.7	807
MXene (ester)							
CoSe ₂ @CNTs	288	14.2	11.7	2.61	799	207	763

Materials	Performance	References	
	Cycling*	Rate**	
CoSe2@CNTs-MXene	$400/2/200^{th}$	347.5/5	This work
Phosphorene/ Ti ₃ C ₂ T _x	343/1/1000 th	193/5	[S1]
3D carbon coated MXene	337.9/0.64/600 th	194.7/3.2	[S2]
CT-S@ Ti ₃ C ₂ -450	492/0.1/100 th	223/5	[S3]
Hollow MXene Spheres	210/0.5/1000 th	120/5	[S4]
NaTi ₂ (PO ₄) ₃ cubes on Ti ₃ C ₂	150/1/2000 th	113/5	[S5]
MXene-Hard Carbon	267.9/0.2/1500th	98.2/2	[S6]
Ti ₃ C ₂ -NiCoP	302.8/0.1/100 th	240.1/2	[S7]
Ti ₃ C ₂ MXene-Derived Sodium	191/0.2/150 th	101/2	[S8]
Titanate Nanoribbons			

 Table S2 Comparison of MXene-based anode in sodium-ion storage

*): Capacity (mAh g^{-1})/Current Density (A g^{-1})/Cycles; **): Capacity (mAh g^{-1})/Current Density (A g^{-1});

Fig. S1 XRD patterns of Ti₃AlC₂ and MXene

Fig. S2 a, b TEM images of $Ti_3C_2T_x$ MXene nanosheets. c SEAD patterns of singlelayer $Ti_3C_2T_x$ MXene nanosheet

Fig. S3 XRD patterns of ZIF-67 and ZIF-67/MXene

Fig. S4 XRD patterns of Co@CNTs and Co@CNTs-MXene after annealing treatment at 800 °C under Ar/H₂ atmosphere

Fig. S5 Elemental Mapping of CoSe₂@CNTs-MXene

Fig. S6 SEM images of CoSe2@CNTs

Fig. S7 CV curves of CoSe₂@CNTs

Fig. S8 Raman of CoSe₂ after charging to 3.0 V

Fig. S9 Cycle performance of pure MXene

Fig. S10 Cycle performance of CoSe2@CNTs

Fig. S11 XPS spectrum **a**, **d**) C 1s, **b**, **e**) O 1s, **c**, **f**) F 1s of electrode surface with ether and ester electrolyte systems

Fig. S12 XPS spectrum of separators with ether and ester electrolyte systems

Fig. S13 Diagram of LUMO and HOMO energy level of Propylene carbonate (PC) and Bis(2-methoxy ethyl)ether (DEGDME)

Fig. S14 Charge density difference of Na_2Se on $Ti_3C_2O_2$

S2 Calculation Method

Capacitive contribution can be calculated by the following equation:

$$i=av^b$$
 (S1)

Where i is the current (A),

v is the scan rate (mV/s).

The slope b is 0.5 demonstrates a diffusion-controlled process (battery-type behavior). When slope is 1, this means a non-diffusion-controlled redox reactions on the surface (capacitive effect).

$$i = k_1 v + k_2 v^{1/2}$$
 (S2)

In Eq. S2, $k_1 v$ and $k_2 v^{1/2}$ correspond to the current contribution from the capacitive effect and diffusion-controlled process, respectively.

Fig. S15 Nyquist plots of CoSe2@CNTs

Fig. S16 Equivalent circuit of EIS

Fig. S17 Dynamic EIS analysis of CoSe₂@CNTs-MXene in ether and ester electrolyte at first discharge/charge cycle

Fig. S18 Cycle performance of Na₃V₂(PO₄)₃ half cell at the current of 100 mAh g⁻¹

Supplementary References

- [S1]X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti₃C₂T_x mxene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651-3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- [S2]P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3d carbon-coated mxene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163-171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- [S3]J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti₃C₂ mxene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- [S4]M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3d macroporous mxene frameworks for na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- [S5]Q. Yang, T. Jiao, M. Li, Y. Li, L. Ma et al., In situ formation of NaTi₂(PO₄)₃ cubes on Ti₃C₂ mxene for dual-mode sodium storage. J. Mater. Chem. A 6(38), 18525-18532 (2018). https://doi.org/10.1039/C8TA06995F
- [S6]N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu et al., Mxene-bonded flexible hard carbon film as anode for stable na/k-ion storage. Adv. Funct. Mater. 29(51), 1906282 (2019). https://doi.org/10.1002/adfm.201906282
- [S7]D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3d crinkled porous Ti₃C₂ mxene architectures coupled with nicop bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. **12**(8), 2422-2432 (2019). https://doi.org/10.1039/C9EE00308H
- [S8]P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti₃C₂ mxene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1-8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002