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Cu3(PO4)2: Novel Anion Convertor for Aqueous 
Dual‑Ion Battery
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Zhen‑Bo Wang2 *, Jie Shu1,3 *

HIGHLIGHTS

• A novel anion electrode  Cu3(PO4)2 is proposed at the first time.

• The reaction mechanism of  Cu3(PO4)2 electrode is investigated.

• The dual‑ion cell is constructed by using pretreated  Cu3(PO4)2 and  Na0.44MnO2.

ABSTRACT Electrode materials which can reversibly react with anions 
are of interest for aqueous dual‑ion batteries. Herein, we propose a novel 
anion electrode,  Cu3(PO4)2, for constructing an aqueous dual‑ion cell. The 
 Cu3(PO4)2 electrode can operate in a quasi‑neutral condition and deliver 
a reversible capacity of 115.6 mAh g−1 with a well‑defined plateau at 
−0.17 V versus Ag/AgCl. Its reaction mechanism shows that  Cu3(PO4)2 
decomposes into  Cu2O and subsequently is converted into Cu during the 
initial discharge process. In the following charge process, Cu is oxidized 
into  Cu2O. It suggests  Cu3(PO4)2 reacts with  OH− ions instead of  PO4

3− 
ions after the initial discharge process and its potential thereby depends 
upon the  OH− ions concentration in electrolyte. Additionally, an aqueous 
dual‑ion cell is built by using pretreated  Cu3(PO4)2 and  Na0.44MnO2 as 
anode and cathode, respectively. During cycling,  OH− ions and  Na+ ions 
in electrolyte can be stored and released. Such a cell can provide a discharge capacity of 52.6 mAh g−1 with plateaus at 0.70 and 0.45 V, 
exhibiting the potential of application. This work presents an available aqueous dual‑ion cell and provides new insights into renewable 
energy storage and adjustment of the  OH− ions concentration in aqueous buffer solution.
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1 Introduction

For the storage of energy coming from renewables such as 
solar and wind, numerous efforts have been dedicated to 
the development of rechargeable battery over past several 
decades [1, 2]. Among the multitudinous explored recharge‑
able batteries, aqueous dual‑ion battery as the novel energy 
storage device has attracted intensive attention recently 
because of its availability, low cost, high safety and eco‑
friendliness [3–6]. Its concept is different from that of 
tradition rocking‑chair battery in which anions or cations 
migrate across electrolyte and then react with anode and 
cathode [7, 8]. For aqueous dual‑ion battery, anions react 
reversibly with the electrode, whereas cations do the same 
way in the other electrode. It is developed from dual‑carbon 
batteries or dual‑graphite batteries as scientists find that 
anions can be inserted into graphite [9, 10]. The first pro‑
totype of dual‑ion batteries used nonaqueous electrolytes 
and carbonaceous electrodes are proposed by McCullough 
et al. [11]. In that patent, the electrochemical behavior of this 
battery is described according to the “dual‑intercalation” 
mechanism. Thereafter, continuous progress is made to the 
development of dual‑ion batteries [12–14]. Although tradi‑
tional dual‑ion batteries using organic electrolytes (including 
ionic liquid electrolytes) exhibit high safety, high working 
voltages (normally > 3 V), and reasonable specific capacity 
(~ 80 mAh g−1), the flammability and toxicity of organic 
electrolytes make them suffer from the safety issues [13, 
15–22]. These problems hinder their wide application. To 
solve these problems, dual‑ion batteries with nonflamma‑
ble and low toxicity aqueous electrolytes have been pro‑
posed, and several configurations such as Ag/MnO2 [23], 
 NaTi2(PO4)3/Bi [24], and  NaTi2(PO4)3/Ag [25, 26] have 
been demonstrated and fabricated so far. Notably, these 
reported systems use silver (Ag) and bismuth (Bi) as the 
electrodes to capture the anions. Although the performance 
of these materials shows decent, they possess several draw‑
backs which need to be conquered. Ag is a little bit expen‑
sive in price, whereas Bi can hardly react with anions in a 
mild solution. Thus, constructing an available aqueous dual‑
ion battery which can cycle in a quasi‑neutral condition is of 
the great importance and desired.

The update of aqueous dual‑ion battery depends on 
the selection of electrode materials which acts as its key 

components. Many literatures have reported the electrode 
materials for releasing/storing the cations [27, 28]. Yet 
studies for investigating the anion containers are relatively 
less. Hence, we herein demonstrate a novel anion container, 
 Cu3(PO4)2, for constructing an aqueous dual‑ion cell. This 
material can operate in a quasi‑neutral condition with well‑
defined plateaus and good performance, and its price is 
lower than that of Ag, although its reaction mechanism is 
far different from our original vision. We also use the pre‑
treated  Cu3(PO4)2 as anode to assemble the aqueous dual‑ion 
cell coupled with  Na0.44MnO2 as cathode. It presents well‑
defined operating plateaus and good cycling performance.

2  Results and Discussion

Cu3(PO4)2 is an inorganic compound which is composed of 
copper cations and phosphate anions. Due to its insolubility 
in water,  Cu3(PO4)2 can be prepared by the facile precipita‑
tion method. The typical synthesis is described in supporting 
information. The as‑obtained powder is sky blue material as 
shown in Fig. 1a. X‑ray diffraction (XRD) pattern (Fig. 1b) 
suggests that two phases exist in this powder, which are 
 Cu3(PO4)2 and  Cu3(PO4)2·3H2O, respectively, according to 
the two reference patterns. Besides, most of diffraction peaks 
are found to show the large full width at half maximum, 
indicative of its small crystallite size. The scanning electron 
microscope (SEM) images prove this result. As observed 
in Fig. S1a, b, the  Cu3(PO4)2 powder consists of countless 
nanosheets with thickness around 25 nm, providing large 
surface area to contact with the electrolyte. Additionally, 
the water content in this powder is measured by thermo‑
gravimetric (TG) analysis (Fig. S2). About 6% of mass is 
lost below 200 °C, corresponding to the elimination of the 
physically absorbed and zeolitic water [29].

Cu3(PO4)2 selected as the electrode material in this work 
is based on its low thermodynamic solubility product [30]. 
We think when the  Cu3(PO4)2 electrode is discharged, Cu 
will be produced and subsequently a metal‑sparingly soluble 
salt electrode is constructed until  Cu3(PO4)2 is vanished. The 
half reaction should be as follows:

Its potential thus can be given by:

(1)Cu3(PO4)2 + 6e− ⇔ 3Cu + 2PO3−
4
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Finally, the potential of  Cu3(PO4)2 electrode is calculated 
to be −0.22 V versus Ag/AgCl.

To verify the aforementioned half reaction and corre‑
sponding potential, the  Cu3(PO4)2 electrodes are fabricated 
and tested in three‑electrode cells. Figure 1c, d exhibits the 
galvanostatic discharge/charge profiles of  Cu3(PO4)2 elec‑
trode and its corresponding cycling performance. Two dis‑
tinct plateaus around −0.14 and −0.40 V versus Ag/AgCl 
is observed upon the initial discharge process, whereas 
only one plateau at −0.17 V versus Ag/AgCl appears in the 
recharge process. This case leads to that the initial discharge 
capacity (265.1 mAh g−1) is much higher than the follow‑
ing recharge capacity (115.9 mAh g−1). We consider that 
the large irreversible capacity loss during initial cycle is 
attributed to the formation of several intermediates as some 
reported metal oxides [31, 32], which can be reacted with 
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lithium ions in the first discharge process. Additionally, the 
difference between calculated potential and the experimental 
one is slight. In the following second and third cycles, the 
large irreversible capacity losses almost disappear, and the 
charge capacities of  Cu3(PO4)2 electrode reach to 132.6 and 
129.9 mAh g−1, respectively. The differential dQ/dV plots 
of Fig. 1c are displayed in Fig. S3. An increase in charge 
capacity may be owing to the fact that electrolyte does not 
contact well with  Cu3(PO4)2 electrode before cycling. After 
45 cycles, the  Cu3(PO4)2 electrode can deliver a reversible 
capacity of 115.6 mAh g−1 with 87.2% of its second capac‑
ity. Even after 145 cycles, the reversible capacity can still be 
maintained at 96 mAh g−1. These results suggest the good 
cycling performance. If any defects could be introduced into 
this active material, the cycling performance may be better 
[33, 34].

What are the intermediates during discharging and the 
corresponding mechanism? To answer these two ques‑
tions, we have characterized the  Cu3(PO4)2 electrodes at 
various states of discharge by using XRD measurement. 
The obtained results depicted in Fig. 2 are far different 

Specific capacity (mAh g−1)

S
pe

ci
fic

 c
ap

ac
ity

 (m
A

h 
g−

1 )

100 mA g−1

(a) (b)

(c) (d)

1st
2nd
3rd

Sample in this work

JCPDS No. 21-0298

JCPDS No. 01-0054

Cu3(PO4)2

Cu3(PO4)2·3H2O

In
te

ns
ity

 (a
.u

.)

2θ (°)
10

210

140

70

0

0.3

0.0

−0.3

−0.6

20 30

00 100

Vo
lta

ge
 (V

 v
s.

 A
g/

A
gC

l)

200 300 40 80 120

40 50

Cycle number

60 70 80

Fig. 1  a Digital photo and b XRD pattern of  Cu3(PO4)2. c Galvanostatic discharge/charge profiles of  Cu3(PO4)2 between −0.7 and 0.4 V versus 
Ag/AgCl at 100 mA g−1, and d the corresponding cycling performance
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from our original vision. For an as‑prepared  Cu3(PO4)2 
electrode, diffraction peaks belonged to  Cu3a(PO4)2 and 
 Cu3(PO4)2·3H2O can be defined. Since PTFE binder is 
electrochemically inactive, we select it as an internal 
standard to conduct quantitative phase analysis. With dis‑
charging to the first plateau at −0.14 V versus Ag/AgCl, 
the  Cu3(PO4)2 and  Cu3(PO4)2·3H2O diffraction peaks in 
intensity slowly decrease (Fig. 2b), while two new diffrac‑
tion peaks assigned to the (111) and (200) facets of  Cu2O 
phase appear (Fig. 2c), suggesting that the  Cu3(PO4)2 and 
 Cu3(PO4)2·3H2O phases slowly decompose into  Cu2O. 
During discharging on the second plateau around −0.40 V 
versus Ag/AgCl, we found that the intensities of the  Cu2O 
diffraction peaks in electrode is still decreasing with the 
formation of Cu phase until the voltage is at −0.7 V versus 
Ag/AgCl. Thus, the intermediate upon initial discharging 
is  Cu2O. In the recharge process, Cu is converted into  Cu2O 
instead of  Cu3(PO4)2, which is the main reason for the ini‑
tial irreversible capacity loss. As a result, the electrochemi‑
cal reaction of the  Cu3(PO4)2 electrode during cycling can 
be described as:

(3)

The first plateau ∶ 2Cu3(PO4)2 + 6e− + 6OH−

⇒ 3Cu2O + 4PO3−
4

+ 3H2O

The corresponding mechanism is schematically illustrated 
in Fig. 2d.

According to the electrochemical mechanism mentioned 
above, the  Cu3(PO4)2 electrode reacts with  OH− ions instead 
of  PO4

3− ions after initial discharge process, and its potential 
depends upon the concentration of  OH− ions in electrolyte. 
The voltage profiles of  Cu3(PO4)2 electrodes in electrolytes 
with different pH validate this result (Fig. S4). It should 
be noted that although  Cu3(PO4)2 electrode provides larger 
specific capacity and lower plateau in 0.75 M  NaH2PO4 
electrolyte and 0.75 M  Na3PO4 electrolyte, respectively, 
their cycling performances (Fig. S5) are inferior to that 
of  Cu3(PO4)2 electrode in 0.75 M  Na2HPO4 electrolyte 
(Fig. 1d). Nevertheless, an aqueous dual‑ion cell can still 
be constructed and the corresponding schematic is depicted 
in Fig. 3a. As viewed, we select  Na0.44MnO2 as cathode due 
to its low cost and eco‑friendliness [35–37]. Its voltage pro‑
files in 0.75 M  NaH2PO4 electrolyte and 0.75 M  Na2HPO4 
electrolyte are shown in Figs. S6 and S7, respectively. 

(4)
The second plateau ∶ Cu2O + H2O + 2e− ⇒ 2Cu + 2OH−

(5)
The plateau during recharging ∶ 2Cu + 2OH−

⇒ Cu2O + H2O + 2e−
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Fig. 2  a XRD patterns of  Cu3(PO4)2 electrode during cycling. The contour map for the corresponding XRD patterns in the 2θ range of b 5–14° 
and c 35.5–52.5°. d Reasonable mechanism for  Cu3(PO4)2 electrode during the electrochemical reaction
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During charging,  Na+ ions and  OH− ions are released by 
the  Na0.44MnO2 and pretreated  Cu3(PO4)2 electrodes, respec‑
tively. Meanwhile, this cell can increase the concentration of 
NaOH in electrolyte. Upon discharging, these two ions are 
captured by the cathode and anode, respectively, leading to 
the reduction in the concentration of NaOH. As a result, this 
aqueous dual‑ion cell can not only modify the concentration 
of  OH− ions in electrolyte, but also provide electrical energy. 
The reaction of this cell can be written as follows:

Figure 3b displays galvanostatic discharge/charge pro‑
files of pretreated  Cu3(PO4)2/Na0.44MnO2 dual‑ion cell. 
Due to the presence of irreversible capacity loss in the ini‑
tial cycle, the  Cu3(PO4)2 electrode needs to be pretreated 
before the dual‑ion cell assembly. For the pretreatment, 

(6)

xCu
2
O + xH

2
O + 2Na

0.44
MnO

2
⇔ 2xCu

+ 2xOH− + 2xNa+ + 2Na
0.44−xMnO

2

the  Cu3(PO4)2 electrode is discharged and subsequently 
recharged for 1 cycle. As observed in Fig. 3b, this as‑fab‑
ricated dual‑ion cell can provide a discharge capacity of 
52.6 mAh g−1 at 0.5 C based on the mass of  Na0.44MnO2. 
Thus, the x value in  Na0.44‑xMnO2 can be calculated, being 
0.19. Two well‑defined plateaus are observed at 0.70 and 
0.45 V. By contrast, recently reported desalination batter‑
ies, such as  Na2Mn5O10//AgCl [23],  TiS2//K20 [38], and 
BiOCl//Na0.44MnO2 [39], displayed the operating plateaus 
only at ~ 0.3, ~ 0.4, and ~ 0.1 V, respectively. The detailed 
comparison for operating voltage of pretreated  Cu3(PO4)2/
Na0.44MnO2 dual‑ion cell in this work with other cells in the 
literatures [23, 38–43] is plotted in Fig. 3c and Table S1. It 
is worth noting that the pH value changes during cycling 
as shown in Fig. S8, indicating that this system can adjust 
the  OH− ions concentration in aqueous electrolyte. Besides, 
XRD patterns of  Na0.44MnO2 in dual‑ion cell during cycling 
are characterized as displayed in Fig. S9. The diffraction 
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peaks of  Na0.44MnO2 show a quasi‑regular change, suggest‑
ing that the variation of  Na0.44MnO2 during cycling is quasi‑
reversible. The result is also in good agreement with previ‑
ous study [44]. Figure 3d presents the cycling performance 
of this cell. It can retain the capacity of 43.8 mAh g−1 after 
15 cycles. When cycled to 31 cycles, the dual‑ion cell still 
provides 31.5 mAh g−1, showing its potential of application.

3  Conclusions

In summary, we propose a novel electrode material 
 Cu3(PO4)2 as an anion container for aqueous dual‑ion 
cell. The sample prepared by a simple precipitation 
method consists of two phases which are  Cu3(PO4)2 and 
 Cu3(PO4)2·3H2O. When tested in the three‑electrode cell, 
it can deliver a reversible capacity of 115.6 mAh g−1 with 
a charge plateau of −0.17 V versus Ag/AgCl. Our inves‑
tigation for the reaction mechanism of  Cu3(PO4)2 reveals 
that the initial capacity loss of this material comes from 
the decomposition of  Cu3(PO4)2 into  Cu2O, and such trans‑
formation is irreversible. Besides,  Cu3(PO4)2 reacts with 
 OH− ions instead of  PO4

3− ions after the initial discharge 
process. Eventually, an available aqueous dual‑ion cell 
has been successfully constructed by applying pretreated 
 Cu3(PO4)2 and  Na0.44MnO2 as anode and cathode. It can 
provide a discharge capacity of 52.6 mAh g−1 with plateaus 
at 0.70 and 0.45 V, exhibiting its potential of application. On 
the basis of this work, our next study shall focus on adjust‑
ment of the  OH− ions concentration in electrolyte by using 
this dual‑ion cell.
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