Supporting Information for

Solution-Processed Transparent Conducting Electrodes for Flexible

Organic Solar Cells with 16.61% Efficiency

Juanyong Wan¹, Yonggao Xia¹, Junfeng Fang^{2, *}, Zhiguo Zhang^{3, 6, *}, Bingang Xu⁴, Jinzhao Wang⁵, Ling Ai¹, Weijie Song¹, Kwun Nam Hui⁷, Xi Fan^{1, *}, Yongfang Li³

¹Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

²School of Physics and Electronics Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, P. R. China

³Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

⁴Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China

⁵Department of Material Science and Engineering, Hubei University, Wuhan 430062, P. R. China

⁶State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

⁷Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P. R. China

*Corresponding authors. E-mail: jffang@phy.ecnu.edu.cn (Junfeng Fang); zgzhangwhu@iccas.ac.cn (Zhiguo Zhang); fanxi@nimte.ac.cn (Xi Fan)

Supplementary Figures

Fig. S1 Images of PET plastic substrates with (**a**) 98 wt% H_2SO_4 treatments at R.T. (**b**) 98 wt% CF₃SO₃H treatments at R.T. (**c**) low-concentration (0.8 M) CF₃SO₃H treatments at 50 °C. The underlying PET substrates were damaged by the 98 wt% H_2SO_4 and 98 wt% CF₃SO₃H treatments.

Fig. S2 Optical transparencies of the PEDOT:PSS films with the CF_3SO_3H treatments: (a) 0.1 M; (b) 0.3 M; (c) 0.8 M; (d) 2.0 M: (e) 4.0 M; and (f) 6.0 M

Fig. S3 Morphology of the PEDOT:PSS films with 6 vol% DMSO treatments

Fig. S4 FTIR (**a**) and Raman spectra (**b**) of the as-cast polymeric films and the PEDOT:PSS films with CF₃SO₃H doping treatments at 50 and 140 °C, respectively

Fig. S5 XPS of the as-cast polymeric films and the PEDOT:PSS films with CF₃SO₃H doping treatments at 50 $^{\circ}$ C and 140 $^{\circ}$ C

Fig. S6 EQE spectra of the control OSCs fabricated on the 110-nm-thick ITO electrodes on glass substrates and the flexible OSCs fabricated on the 180-nm-thick ITO electrodes on PET substrates

Fig. S7 Wettability characteristics of PEDOT:PSS (P VP AI4083) droplets on the surfaces of these films (PH1000): (**a**) as-cast; (**b**) 99.5 wt% CH₃SO₃H doing at 140 °C; (**c**) 8.0 M CH₃SO₃H doping at r.t.; and (**d**) 0.8 M CF₃SO₃H doping at 50 °C

Fig. S8 R/R_0 of the 0.8 M CF₃SO₃H-doped PEDOT:PSS (75 nm)/PET substrates and the (180 nm) ITO/PET substrates as a function of bending cycles at *r* of 1.5 mm