Supporting Information for

Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf" Electrode for High-Energy Sodium-Sulfur Batteries

Wenyan Du¹, Kangqi Shen², Yuruo Qi¹, Wei Gao¹, Mengli Tao¹, Guangyuan Du¹, Shu-juan Bao¹, Mingyang Chen^{3, *}, Yuming Chen^{4, *}, Maowen Xu^{1, *}

¹Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China

²Beijing Computational Science Research Center, Beijing 100193, P. R. China

³Center for Green Innovation, School of Materials Science and Engineering,

University of Science and Technology Beijing, Beijing 100083, P. R. China

Beijing Computational Science Research Center, Beijing 100193, P. R. China

⁴Department of Nuclear Science and Engineering, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United State

*Corresponding authors. E-mail: xumaowen@swu.edu.cn (Maowen Xu); yumingc@mit.edu (Yuming Chen); mychen@ustb.edu.cn (Mingyang Chen)

S1 Microstructure Characterization

The structures of the samples were characterized by powder X-ray diffraction (XRD, ShimdzuXRD-7000) with Cu Kα radiation. Raman spectra for materials were recorded using an Invia Refl (Renishaw, UK). The morphologies, compositions and microstructures of the composites were analyzed via field-emission scanning electron microscopy (FESEM, JSM-7800F), energy dispersive spectrometry (EDS), and transmission electron microscopy (TEM, JEM-2100), respectively. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo Scientific ESCALAB 250Xi electron spectrometer. Thermogravimetric analysis was performed using a Thermo Gravimetric Analyzer (TGA, Q50). The analyses for the specific surface area and the size distribution of the products were performed using the Brunauer-Emmett-Teller method (BET, Quantachrome Instruments, USA).

S2 Computational Methods

The adsorption behaviors of Na_2S_x (x=1, 2, 4, 6, 8) polysulfides on CNF-L@Co/S composite were modelled using on first-principles density functional theory (DFT) [S1] carried out by using Vienna ab initio simulation package (VASP) [S2]. The Co nanoparticle region and CNF region of CNF-L@Co were modelled separately, using a Co (111) slab and a N-doped graphite (111) slab respectively. The Co (111) slab is constructed with a $3 \times 3 \times 2$ supercell of the (111)-cleaved surface and it contains 4 Co layers and a total number of 72 Co atoms. The N-doped graphite slabs are constructed using a supercell that contains 4 layers and a total number of 72 atoms. One of the 18 surface C atoms of the surface layer is replaced by the N dopant. For both of the slab models, a vacuum of 25 Å is extended to the surface slab to separate the slab and its images. The adsorption behaviors of Na₂S_x at the Co and CNF regions of CNF-L@Co were modelled by interacting the Na₂S_x molecules with the two slabs. Na₂S_x polysulfides, x = 1, 2, 4, 6, and 8 were initially placed at different possible adsorptions sites with several orientations, and optimized until fully relaxed. The adsorption energies E_{ads} for Na_2S_x were evaluated for the optimized adsorption configurations using:

$$E_{ads}(Na_2S_x) = E(Na_2S_x) + E(slab) - E(Na_2S_x@slab)$$
(S1)

where $E(Na_2S_x)$, E(slab), and $E(Na_2S_x@slab)$ are the calculated total energies for the Na_2S_x molecule, the surface slab, and the adsorption configuration, respectively. A more positive E_{ads} indicates a stronger adsorption.

The Perdew-Burke-Ernzerhof (PBE) functional [S3] and the projected augmented wave (PAW) [S4] potentials were used for the DFT calculations. The plane wave cut-off energy was set to be 400 eV. The K-points of the 2D Brillouin zone were sampled using a $3\times3\times1$ Monkhorst-Pack grid [S5] during the structure optimizations and energy computations. The force convergence criterion for the geometry optimization calculations was set to 10^{-4} eV Å⁻¹.

The Na dissociation energy for a Na-containing species (denoted as $Na_xS_yCo_z$) related to Co@NPCNFs such as polysulfides and Na/S-adsorbed Co surfaces can be evaluated using:

$$E_{disso}(Na_xS_yCo_z) = E(Na, solid) + E(Na_{x-1}S_yCo_z) - E(Na_xS_yCo_z)$$
(S2)

where E is the calculated total energy for each species involved in the Na dissociation reaction, at the DFT level. For the leaving Na atom, we use the per-atom energy of Na solid, E (Na, solid), so that we can compared the Na binding strengths for the different Na-containing species at CNF-L@Co to the solid Na. If x = 2 and z = 0, Eq. 2 yield the dissociation energy for the gas phase polysulfides (Na₂S_x); if $z \neq 0$, the Na dissociation energy is for the Na species associated to the S-covered Co nanoparticles.

S3 Supplementary Tables and Figures

Fig. S1 (a, b) FESEM images of the CNF

S2 FESEM images and XRD of the ZIF composite nanofiber before carbonization

Fig. S3 TGA of the CNF-L@Co in air

Fig. S4 EDS elemental mappingsof CNF-L@Co composite

Fig. S5 (a) N1s XPS spectrum, (b) C1s XPS spectrum of CNF-L@Co/S

Fig. S6 Raman spectrum of CNF-L@Co

Fig. S7 Characterization of CNF-L@Co/S composite. (**a**, **b**) FESEM images, (**c**) TGA , (**d**, **e**) TEM images, (**f**) BET of composite material

Fig. S8 (a) A schematic showing the faster redox kinetics of NaPSs on the Co surface, (b) CV curves of CNF-L@Co/S composite

Fig. S9 CV curves of CNF-L@Co/S and CNF/S cathodes at a scan rate of 0.1 mV s⁻¹

Fig. S10 Characterization composite. (**a**, **b**) FESEM images of CNF-L. (**c**) Cycling capabilities with the current densityat 0.1 C, and (**d**) Rate performances for CNF-L/S electrode

Fig. S11 Long cycling performance of CNF-L@Co/S cathode at 2.0 C

Fig. S12 (a) A cross section of the CNF-L@Co/S electrode, (b) Cycling performance of CNF-L@Co at 0.1 C

Fig. S13 In situ Raman spectra of the CNF-L@Co/S electrode

Table S1 Cathode composition, sulfur loading, electrolyte composition, and electrochemical performance of RT Na-S batteries with various cathodes that are reported in the literature

Cathode	Sulfur Ioadin g	Electrolyte	Current density/Capaci ty (mAh g ⁻¹)	Current density/Capac ity (mAh g ⁻¹)	Current density/Capac ity (mAh g ⁻¹)	Current density/Capac ity (mAh g ⁻¹)
CFC/S ^[40]	33.4%	1.5 M NaClO4 and 0.2 M NaNO3 in TEGDME	0.05 C/491,	0.1 C/141	0.2 C/265	0.5 C/80
S/CHNBs@ PCNFs ^[12]	71.2%	1 M NaClO ₄ in EC/PC with FEC	0.2 C/709	0.5 C/598	1 C/487	
S@iMCHS [[] 41]	46%	1 M NaClO4 in EC/PC+FEC	0.1 C/391	0.2 C/386	0.5 C/352	1 C/305
S@C ^[35]	35%	NaPF ₆ in TEGDME	0.1 C/900	0.25 C/510	0.5 C/490	1 C/370
HSMC-Cu- S ^[23]	50%	1.0 M NaClO4 EC/ DMC	0.03 C/610	0.06 C/600	0.6 C/400	1.2 C/290
S@Con- HC ^[15]	~47%	1.0 M NaClO ₄ in PC/EC + 5 wt% FEC)	0.1 C/820	0.2 C/498	0.5 C/383	1 C/313
S@Co/C/r GO ^[42]	37.5%	PFSA-Na membranes	0.1 C/461.2	0.2 C/208.7	0.5 C/164.2	1 C/150.2
S@Ni- NCFs ^[27]	36%	1 M NaClO4 in TEGDME	0.2 C/738.7	0.3 C/565.6	0.5 C/481.1	1.0 C/311.1
CNF- L@Co/S	45%	1 M NaClO4 in EC DEC	/ 0.2 C/929.8	0.5 C/700	1 C/540	1.5 C/442.7

Cathode	Synthetic methods	Sulfur	Current density	50st cycle	Refs.
structure		content		capacity	
		(%)		(mAh g ⁻¹)	
S@Co	Synthetic method: hard templates and	47%	100 mA	708	[15]
nanoparticle	sol-gel process		g ⁻¹		
decorated	Carbon matrix: hollow carbon				
hollow	nanospheres				
carbon	Cobalt source:CoCl ₂				
nanospheres	Carbonization conditions: 200 °C for 2				
	h in a forming gas with 10 vol% H_2 in				
	nitrogen, leading to the formation of				
	Co-HC.				
S@Co/C/rG	Synthetic method: sol-gel process and	37.5%	0.1 C	374	[42]
O cobalt	hydro-thermal				
nanoparticles	Matrix: graphene aeroge				
on graphene	Cobalt source: Co(NO ₃) ₂ (Aladdin, AR,				
aerogel	99%), 15 mL NH ₃ •H ₂ O (Aladdin, AR,				
	25-28%) and 10 mL H ₂ O				
	Carbonization conditions: at 400 °C for				
	2 h in H ₂ (H ₂ % = 5%) atmosphere and				
	another 800 °C for 2 h in Ar				
	atmosphere, the heating rate is				
	5 °C/min. The Co/C/rGO hybrid was				
	obtained.				
Co@NPCNF	Synthetic method: Electrospinning	35%	0.1 C	820	[43]
s/S Cobalt	Matrix: Carbon nanofiber				
nanoparticles	Cobalt source: Co(NO ₃) ₂ •6H ₂ O and				
embedded	0.72 g PVP were added into 4 mL DMF				
into free-	Carbonization conditions: : at 350 °C				
standing	for 2 h and 800 °C for 2 h in Ar				
carbon	atmosphere.				
nanofibers					
CNF-	Synthetic method: Electrospinning and	45%	0.1 C	1050	This
L@Co/S	solution method				work
"Branch-	Matrix: carbon nanofiber				
leaf"	Cobalt source: $582 \text{ mg Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$				
Electrode	and 1300 mg 2-methylimidazole (2-				
	MIM) in 40 mL deionized water.				
	Carbonization conditions: at 350 °C for				
	20 min and continues to raise to 800 °C				
	maintains for 2 h under the protection				
	of Ar atmosphere to obtain CNF-L@Co				
	compound.				

Evole Selection of the similar states in terms of strattare and the spectrum of parameter
--

Fig. S14 (a) Over Co (111) surface, (b) Over the N-doped graphite surface

Fig. S15 The most favorable adsorption of Na_2S_x , x = 1-8, at Co (111) surface as single adsorbate and self-assembled layers

Fig. S16 (a) Calculated adsorption energy (eV) for the most favorable adsorption configuration of Na_2S_x at Co (111) surface and N-doped graphite at the DFT level, (b) Calculated Na dissociation energy (in eV) at the DFT level for the layered Co-S-Na structures and free Na_2S_x , x = 1-8

Supplementary References

[S1] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, A1133-A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

- [S2] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 154, 11169-11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- [S3] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865-3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- [S4] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- [S5] H.J. Monkhorst, J.D. Pack, "Special points for Brillouin-zone integrations"—a reply. Phys. Rev. B 13, 5188-5192 (1976). https://doi.org/10.1103/PhysRevB.16.1748